Устройство управления потоком крови в аппаратах сердечно-легочного обхода



Устройство управления потоком крови в аппаратах сердечно-легочного обхода
Устройство управления потоком крови в аппаратах сердечно-легочного обхода
Устройство управления потоком крови в аппаратах сердечно-легочного обхода
Устройство управления потоком крови в аппаратах сердечно-легочного обхода
A61M1/1012 - Отсасывающие или нагнетательные устройства для медицинских целей; устройства для отбора, обработки или переливания естественных жидких сред организма; дренажные системы (катетеры A61M 25/00; соединители, муфты, клапаны или ответвления для трубок, специально предназначенные для медицинских целей A61M 39/00; устройства для взятия проб крови A61B 5/15; ранорасширители A61B 17/02; слюноотсасыватели для зубоврачебных целей A61C 17/06; фильтры, имплантируемые в кровеносные сосуды A61F 2/01; насосы вообще F04)

Владельцы патента RU 2732312:

Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ТИО им. ак. В.И. Шумакова" Минздрава России) (RU)

Изобретение относится к медицинской технике, а именно к аппаратам искусственного кровообращения (АИК) и экстракорпоральной мембранной оксигенации (ЭКМО). Устройство управления потоком крови в аппарате сердечно-легочного обхода включает роторный насос, входную и выходную магистрали насоса. Входная магистраль насоса имеет возможность подключения к венозному резервуару и содержит актуатор, выполненный в виде гидравлического сопротивления с приводом, соединенным с блоком управления приводом. Выходная магистраль имеет возможность подключения к оксигенатору. Оксигенатор соединен с артериальной линией сердечно-легочного обхода, а блок управления приводом выполнен с возможностью управлять приводом для обеспечения пульсации потока крови, поступающего из оксигенатора в артериальную линию, с заданной частотой и скважностью путем частичного перекрытия и полного открытия просвета входной магистрали насоса. Технический результат сводится к созданию физиологического пульсирующего потока в АИК и аппаратах ЭКМО при заданной скорости вращения рабочего колеса насоса; уменьшению площади контакта крови с инородной поверхностью, потенциально опасной для травмы крови. 3 з.п. ф-лы, 4 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к медицинской технике, а именно к аппаратам искусственного кровообращения (АИК) и экстракорпоральной мембранной оксигенации (ЭКМО) как для искусственного кровообращения при проведении кардиохирургических операций, так и для вспомогательного кровообращения с целью восстановления миокарда в случае застойной сердечной недостаточности.

УРОВЕНЬ ТЕХНИКИ

Многие факторы влияют на результаты операций с применением АИК и ЭКМО, особенно у педиатрических пациентов с врожденными пороками сердца. Преимущество пульсирующей перфузии, по сравнению с непульсирующей, является одним из таких факторов, который по-прежнему широко обсуждается среди исследователей, перфузиологов и хирургов (Agati S, Ciccarello G, Salvo D, et al: Pulsatile ECMO as bridge to recovery and cardiac transplantation in pediatric population: A comparative study. J Heart Lung Transplant 2007; 26: 8).

В частности преимущества пульсирующей перфузии у педиатрических пациентов заключаются в увеличении кровотока жизненно важных органов, улучшении восстановления жизненно важных органов и способствуют уменьшению постоперационных осложнений (Ungar A. Pulsatile Versus Nonpulsatile cardiopulmonary bypass procedures in neonates and infants: From bench to clinical practice. ASAIO 2005; 51: 6-10).

В настоящее время в литературе приводятся достаточно позитивные данные, полученные в результате пульсирующей перфузии у детей и взрослых, а также в экспериментальных моделях на животных.

Для сравнительной оценки непульсирующего и пульсирующего потока с точки зрения сравнения физиологических эффектов данных режимов в 1966 году Шепард и др. (Shepard RB, Simpson DC, Sharp JF: Energy equivalent pressure. Arch Surg 1966; 93: 730-74) предложили индекс энергетического эквивалентного давления (ЭЭД), который точно оценивает гемодинамическую энергию, которая определяется как соотношение между гемодинамической работой давления и объемом крови, перекачиваемой за тот же период времени.

ЭЭД = (fpdt)/(fdt),

где fpdt - гемодинамическая работа по давлению, fdt - объем перкачиваемой крови.

При этом было показано, что пульсирующий поток, который создает более высокий уровень гемодинамической энергии может лучше поддерживать микроциркуляцию и клеточный метаболизм, способствуя восстановлению жизненно важных органов после использования АИК и ЭКМО (Undar A, Masai Т, Beyer ЕА, Goddard-Finegold J, et ah Pediatric physiologic pulsatile pump enhances cerebral and renal blood flow during and after cardiopulmonary bypass Artif Org 2002; 26: 919-923). Кроме того, считается, что пульсирующая перфузии положительно влияет на процесс восстановления, уменьшая синдром системной воспалительной реакции и снижает, продолжительность госпитализации. (Alkan Т, Akc evin A, Undar А, et al: Benefits of pulsatile perfusion on vital organ recovery during and after pediatric open-heart surgery. ASAIO J, 2005; 3: 651-654). Были предложены различные способы имитировать в АИК и ЭКМО естественный пульсирующий кровоток, но ни один из них до сих пор не был признан удовлетворительным. Тем не менее, было проведено достаточно много исследований в области разработок пульсирующих систем для сердечно-легочного обхода.

Известно устройство (US 7850594, В2), которое содержит роторный насос (РН) с приводом, обеспечивающим пульсирующий режим насоса за счет периодического изменения с помощью контроллера скорости вращения рабочено колеса. Однако для реализации данного режима в АИК, в которых используются, главным образом, роликовые насосы из-за инерции рабочего колеса на выходе формируется синусоидальный сигнал, отличающийся от естественной пульсации.

В качестве прототипа нами выбрано устройство (RU 2665180), в котором пульсирующий кровоток в АИК и ЭКМО создается за счет включения параллельно РН канала регулируемой рециркуляции крови. Последний снабжен клапаном, который подключен к блоку управления для генерации пульсирующего потока на выходе РН. Клапан выполняет функцию регулирования потока крови, которая заключается в частичном или полном перекрытии, а также открытии просвета канала рециркуляции крови.

Недостатком указанного устройства является необходимость введения дополнительного контура рециркуляции, который увеличивает площадь контакта крови с инородной поверхностью. Управляемый кланан установленный в канале рециркуляции при закрытии требует относительно большой мощности для срабатывания и удержании заданного зазора при высоком давлении на выходе системы насос-линия рециркуляции, что не позволяет минимизировать систему управления и энергопитания клапаном. Кроме того, поток крови в контуре рециркуляции не участвуюет в процессе оксигенации, что приводит к необходимости увеличения общего объема крови перекачиваемой насосом и, как результат, может привести к дополгительной травме крови.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Предложено устройство управления потоком крови в аппарате сердечно-легочного обхода, включающее роторный насос, входную магистраль насоса для подключения к венозному резервуару и выходную магистраль для подключения к оксигенатору. Входная магистраль насоса содержит актуатор, выполненный в виде гидравлического сопротивления с приводом. Последний соединен с блоком управления приводом, обеспечивающим пульсацию с заданной частотой и скважностью потока крови, поступающего через оксигенатор в артериальную линию системы сердечно-легочного обхода, путем частичного перекрытия и полного открытия просвета входной магистрали насоса.

В качестве аппарата сердечно-легочного обхода может быть использован аппарат искусственного кровообращения.

В качестве аппарата сердечно-легочного обхода может быть использована систему ЭКМО, в которой блок управления привода подключен к блоку кардиосинхронизации, соединенному с блоком регистрации ЭКГ. Актуатор системы ЭКМО может быть выполнен с возможностью регулирования потока крови в соответствии с фазами сердечного цикла в режиме контрпульсации с сердцем пациента. При этом актуатор в диастолическую фазу полностью открывает просвет входной магистрали роторного насоса, повышая диастолическое давление в артериальной линии ЭКМО, обеспечивая при этом увеличение коронарного кровотока, а в систолическую фазу актуатор частично перекрывает просвет входной магистрали, понижая давление в артериальной линии ЭКМО, обеспечивая при этом снижение нагрузки на миокард.

В устройстве управления потоком крови в аппарате сердечно-легочного обхода может быть использован электромеханический или электропневматический, или электрогидравлический привод.

Таким образом, на входе оксигенатора и артериальной линии АИК и аппарата ЭКМО формируется физиологический пульсирующий поток и давление при постоянной скорости рабочего колеса роторного насоса.

Особенность данной системы состоит в том, что за счет установки гидравлического сопротивления актуатора во входной магистрали основная энергия для его работы затрачивается при низком входном давлении венозного резервуара, что позволяет снизить энергопитание и миниатюзировать привод для реализации, что в перспективе дает возможность использование данного изобретения для создания переносной системы ЭКМО.

Таким образом, на выходе системы роторный насос-актуатор в аппаратах ЭКМО формируется кардиосинхронизированый пульсирующий поток и давление в соответствии с фазами сердечного цикла.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в:

- создании физиологического пульсирующего потока в АИК и аппаратах ЭКМО при заданной скорости вращения рабочего колеса насоса;

- предупреждении травмы крови за счет уменьшения площади ее контакта с инородной поверхностью в аппаратах сердечно-легочного обхода;

- универсальности предлагаемого устройства, в котором в качестве базового РН для АИК и ЭКМО может быть использован насос любой конструкции;

- снижении энергозатрат за счет минимизации системы управления и энергопитания клапана в устройствах управления потоком крови в аппаратах сердечно-легочного обхода;

- упрощении конструкции пульсатора в устройстве управления потоком крови в аппаратах сердечно-легочного обхода;

- уменьшении размеров ЭКМО, возможности создания миниатюрных переносных ЭКМО за счет уменьшения размеров пульсатора и снижения энергозатрат для его работы.

Особенность данной схемы включения актуатора во входной магистрали роторного насоса состоит в том, что основная энергия на работу этого сопротивления затрачивается при низком давлени на выходе венозгного резервуара. Поэтому минизируются затраты энергии для работы актутора, что позволяет значительно уменьшить его весо - габаритные и энергетические характеристики, что дает возможность использовать данное изобретение для создания переносной системы ЭКМО.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Существо изобретения поясняется на фигурах, где:

на фиг. 1 показана схема генерации пульсирующего потока в системе АИК с примененнием РН при установке во входной магистрали насоса актуатора - гидравлического сопротивления с приводом, связанным с электронным блоком управления, обеспечивающим заданную частоту и скважность импульсов потока и давления крови на выходе системы;

на фиг. 2 показана схема генерации пульсирующего потока в аппарате ЭКМО в режиме кардтосинхронизации с применением РН и актуатора, встроенного во входную магистраль РН, при этом привод актуатора через блок управления связан с блоком кардиосинхронизации, получающим сигналы от блока регистрации ЭКГ.

на фиг. 3 показана диаграмма давлений и расходов в артериальной линии АИК (ЭКМО), полученная на гидродинамическом стенде при работе РН в непульсирующем режиме.

на фиг. 4 представлена диаграмма давлений и расходов в артериальной линии АИК (ЭКМО), полученная на гидродинамическом стенде с помощью заявленного устройства, обеспечивающего пульсирующий режим работы.

На фигурах обозначены следующие позиции: 1 - роторный насос (РН), 2 - актуатор, 3 - гидравлическое сопротивление, 4 - привод, 5 - блок управления актуатора, 6 - входная магистраль насоса, 7 - выходная магистраль насоса, 8 - блок кардиосинхронизации, 9 - блок регистрации ЭКГ, 10 - оксигенатор, А- артериальная линия АИК (ЭКМО), В-венозная линия АИК (ЭКМО) аппарата сердечно-легочного обхода. Ра - давление в артертеральной линии (мм рт.ст.), Qa - расход в артерии (л/мин).

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Патентуемое устройство содержит РН 1, при этом в его входной магистрали 6 установлен актуатор (А 2), содержащий гидросопротивление (ГС) 3 и привод 4. Блок управления актуатора (БУ) 5, связанный с приводом 4, обеспечивает заданную частоту и скважность сокращений, соотвествущие сердечному ритму при работе в АИК и при работе некардиосинхронизированного режима ЭКМО.

В другом вариате при реализации кардиосинхронизированого режима ЭКМО БУ 5 связан с блоком кардиосинхронизации 8, подключенным к блоку регистрации ЭКГ 9.

Работа данного устройства может быть описана следующим образом.

В первом варианте подключения системы РН 1 - А 2 в АИК и некардиосинхронизированного ЭКМО по схеме «венозный резервуар-оксигенатор» БУ 5, связанный с приводом 4 обеспечивает заданную частоту и скважность пульсаций кровотока и давления, соотвествующих сердечному ритму за счет изменения ГС 3, входящего в состав А 2, встроенного во входную магистраль 6 насоса, которое изменяет степень ее перекрытия, при этом увеличивая или уменьшая поток крови на выходе РН 1.

Во втором варианте при использовании кардиосинхронизиррованного аппарата ЭКМО по схеме «венозная канюля - артериалная канюля», подключение системы PI - А 2 БУ 5 приводом 4 подключен к блоку кардиосинхронизации 8 и блоку регистрации ЭКГ 9.

При этом за счет полного открытия с помощью А2 просвета входной магистрали 6 насоса в фазе диастолы сердца обеспечивается повышение амплитуды артериального давления, что создает условия для увеличения коронарного кровотока. В систолической фазе работы сердца за счет уменьшения с помощью А2 просвета входной магистрали 6 насоса кровоток на выходе РН уменьшается, понижая амплитуду давления в артериальной линии 7, уменьшая постнагрузку или работу левого желудочка сердца.

Таким образом, на выходе системы PH1 - А2 т.е. в артериальной линии 7 формируются близкие к физиологической пульсация и давление без изменения скорости РН 1. Данный режим способствует минимизации травмы форменных элементов крови по сравнению с заявленным ранее устройствами и устранению режима разрежения на входе РН1 с возможной кавитацией крови и появлением газовых пузырьков потенциально опасных для мозгового кровообращения.

Приводим данные, полученные на гидродинамическом стенде, подтверждающего возможность реализации заявленного назначения и достижения указанного технического результата.

На фиг. 3 представлена диаграмма давления и потока в артериальной линии (А) АИК (ЭКМО), снятая на гидродинамическом стенде при работа РН в непульсирующем режиме.

Полученный эффект работы системы РН 1 - А2 с ГС 3, выполенным в виде воздушного клапана, управляемого с помощью привода искусственного сердца Синус-ИС, показан на диаграмме давления и потока в артериальной линии (А) АИК (ЭКМО) на фиг. 4.

Кривая потока также имеет выраженную пульсацию, что может позитивно сказаться при использовании системы у пациентов как при проведении операций на открытом сердце с АИК, так и при использовании при подключении ЭКМО в условиях застойной сердечной недостаточности В данной работе на гидродинамическом стенде в качестве РК использовался насос Rotaflow (Maquet AEG, ФРГ). Как видно из диаграммы, амплитуда пульсового давления в артериальной линии аортальном резервуаре при работе системы PHI - А2 находится в физиологических пределах при среднем расходе 4,8 л/мин.

Таким образом, изобретение может быть использовано как в АИК, так и в аппаратах ЭКМО. В последнем случае, блок управления актуатора связан с блоком кардиосинхронизации, получающим сигналы от блока регистации ЭКГ. При работе в системе ЭКМО актуатор выполнен с возможностью полного открытия просвета входной магистрали с помощью переменного ГС с заданной задержкой относительно зубца R-ЭКГ, обеспечивающей увеличение амплитуды артериального давления в фазе диастолы сердца, реализуя режим контрпульсации и, таким образом, способствуя увеличению коронарного кровотока. В систолической фазе работы сердца актуатор частично перекрывает просвет входной магистрали, уменьшая кровоток и давление на выходе РН в оксигенатор и артериальную линию. Снижение систолического давления в артериальной линии будет приводит к снижению постнагрузки на левый желудочек сердца, что будет способствовать восстановлению пораженного миокарда.

1. Устройство управления потоком крови в аппарате сердечно-легочного обхода, включающее роторный насос, входную и выходную магистрали насоса, отличающееся тем, что входная магистраль насоса имеет возможность подключения к венозному резервуару и содержит актуатор, выполненный в виде гидравлического сопротивления с приводом, соединенным с блоком управления приводом, а выходная магистраль имеет возможность подключения к оксигенатору, при этом оксигенатор соединен с артериальной линией сердечно-легочного обхода, а блок управления приводом выполнен с возможностью управлять приводом для обеспечения пульсации потока крови, поступающего из оксигенатора в артериальную линию, с заданной частотой и скважностью путем частичного перекрытия и полного открытия просвета входной магистрали насоса.

2. Устройство по п. 1, отличающееся тем, что в качестве аппарата сердечно-легочного обхода используют аппарат искусственного кровообращения.

3. Устройство по п. 1, отличающееся тем, что в качестве аппарата сердечно-легочного обхода используют систему экстракорпоральной мембранной оксигенации (ЭКМО), в которой блок управления привода подключен к блоку кардиосинхронизации, соединенному с блоком регистраци ЭКГ, причем актуатор выполнен с возможностью регулирования потока крови в соответствии с фазами сердечного цикла в режиме контрпульсации с сердцем пациента, полного открытия просвета входной магистрали роторного насоса в диастолическую фазу с повышением диастолического давления в артериальной линии ЭКМО и обеспечением увеличения коронарного кровотока и частичного перекрытия просвета входной магистрали в систолическую фазу с понижением давления в артериальной линии ЭКМО и снижением нагрузки на миокард.

4. Устройство по п. 1, отличающееся тем, что в качестве привода использован электромеханический, или электропневматический, или электрогидравлический привод.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к экстракорпоральным и имплантируемым устройствам механической поддержки кровообращения. Искусственное сердце содержит левый и правый роторные насосы крови.

Изобретение относится к медицинской технике. Устройство для сбора крови во время операции состоит из корпуса с крышкой, имеющей штуцер подвода вакуума, штуцер отсоса крови, и сжимаемого контейнера.

Изобретение относится к медицинской технике. Искусственное сердце с мембранно-клапанным насосом содержит оболочку, внутри которой размещены ресиверы и камеры сжатия с рабочей жидкостью, снабженные клапанами всасывания и нагнетания, разделенные перегородками, и источник электроэнергии, установленный с возможностью воздействовать на мембрану, выполняющую функции насоса.

Изобретение относится к медицинской технике. Осевой насос для перекачивания крови включает корпус с обмотками электропривода, во внутренней полости которого на шарнирных подшипниках впускного и выпускного опорных узлов размещено осевое рабочее колесо с лопатками, содержащее постоянный магнит.

Изобретение относится к медицинской технике, а именно к аспирационному контуру системы струйной техники для селективного управления аспирацией. Контур содержит аспирационную магистраль, функционально соединенную с хирургическим инструментом.

Группа изобретений относится к медицине и медицинской технике. Способ удаления токсина из биологической текучей среды в устройстве, пригодном для диализа содержащей подлежащее удалению связывающее белки вещество биологической текучей среды, включает диализ биологической текучей среды относительно диализной текучей среды, содержащей адсорбент для подлежащего удалению связывающего белки вещества, через полупроницаемую мембрану, корректировку диализной текучей среды так, что связывающая способность адсорбента для подлежащего удалению связанного с белками вещества снижается, и подлежащее удалению вещество переходит в раствор, и балансировку общего объема текучих сред внутри устройства, пригодного для диализа содержащей подлежащее удалению связывающее белки вещество биологической текучей среды, выполняемую посредством балансировочной системы.

Группа изобретений относится к медицинской технике. Молокоотсос (1) для сцеживания молока из женской груди содержит набор (2) для сцеживания, контейнер (5), соединенный с набором (2) для сцеживания, и вакуумный узел (6), соединенный с набором (2) для сцеживания.

Группа изобретений относится к медицинской технике. Хирургическая система для обработки ткани из пациента включает контейнер, содержащий: внешнюю стенку, окружающую внутренний объем для содержания ткани; и фильтр для обработки ткани.

Группа изобретений относится к медицинской технике, а именно к двум вариантам системы медицинского назначения для обработки тканей и устройству медицинского назначения для управления циркуляцией.

Настоящее изобретение относится к медицинской технике. Молокоотсос содержит первый насос и второй насос, по меньшей мере один набор для сцеживания, клапанный узел и узел управления для управления клапанным узлом и/или насосами.

Изобретение относится к медицинской технике, а именно к экстракорпоральным и имплантируемым устройствам механической поддержки кровообращения. Искусственное сердце содержит левый и правый роторные насосы крови.
Наверх