Способ отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов

Изобретение относится к способу отделения отработавшего нитридного ядерного топлива от оболочки фрагментов тепловыделяющего элемента и может быть использовано в технологии переработки отработавшего нитридного ядерного топлива в составе технологии замкнутого ядерного топливного цикла. Фрагменты тепловыделяющих элементов вместе с оболочкой нагревают до температуры не менее 500 °С и выдерживают в газовой атмосфере, причем выдержку нагретых фрагментов тепловыделяющих элементов осуществляют в атмосфере азота. Техническим результатом является исключение присутствия химически агрессивного газа в процессе отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов, упрощение аппаратурного оформления способа, сокращение побочных компонентов на дальнейших этапах переработки нитридного ядерного топлива, также перевод плотных спеченных образцов нитридного топлива в микродисперсный порошок, что позволяет ускорить дальнейшие операции переработки топлива. 3 ил., 1 табл.

 

Изобретение относится к ядерной энергетике и может быть использовано в технологии переработки отработавшего нитридного ядерного топлива в составе технологии замкнутого ядерного топливного цикла.

Благодаря высокой плотности, нитридное ядерное топливо является одним из наиболее перспективных видов топлива для реакторов на быстрых нейтронах, которые могут быть использованы в технологиях замкнутого ядерного топливного цикла [1]. В настоящее время наряду с разработкой способов синтеза высокочистого нитридного топлива с оптимальным составом, пористостью и плотностью, активно ведется поиск безопасных и простых способов его своевременной переработки после использования по прямому назначению. Этот поиск обусловлен тем, что существующие гидрохимические способы не могут быть использованы для переработки ядерного топлива в рамках замкнутого ядерного топливного цикла, поскольку включают операцию длительного хранения топлива. Кроме этого, гидрохимические способы переработки ядерного топлива обладают рядом существенных недостатков, среди которых образование большого объема радиоактивной воды, необходимость высоких трудовых и энергетических затрат, повышение рисков утечки высокоактивного топлива при транспортировке и хранении [2].

В этой связи, перспективными представляются способы переработки нитридного ядерного топлива в расплавленных солях, устойчивых к радиационному и тепловому воздействию. Основное достоинство таких способов заключается в исключении длительного хранения тепловыделяющих элементов с отработавшим ядерным топливом перед его переработкой. Однако ввиду того, что активное внимание к данным способам появилось сравнительно недавно, все нижеперечисленные способы пока находятся в стадии разработки и лабораторной апробации. Для аппаратурного упрощения, тепловыделяющие элементы, длина которых достигает 4 м, предварительно подвергают фрагментации, после чего подвергают дальнейшим операциям переработки.

Известны способы переработки нитридного ядерного топлива, включающие фрагментацию тепловыделяющих элементов с топливом и конверсию нитридных компонентов топлива в хлориды путем их анодного и химического растворения в хлоридных расплавах, содержащих CdCl2, при температуре от 450 до 700 °С [3, 4]. После конверсии компоненты топлива могут электролитически извлекаться из расплава для изготовления нитридного топлива. Однако переработка фрагментов тепловыделяющих элементов, оболочка которых не отделена от отработавшего нитридного ядерного топлива, представляется неэффективной ввиду загрязнения перерабатываемого топлива компонентами оболочки. Это справедливо и для других способов переработки нитридного ядерного топлива в расплавленных солях.

Следовательно, одной из основных задач разрабатываемых способов переработки ядерного топлива является отделение основной массы топлива от оболочки тепловыделяющего элемента и продуктов деления топлива перед его дальнейшей переработкой.

Известны способы отделения компонентов ядерного топлива от оболочки фрагментов тепловыделяющего элемента, включающие плавление оболочки в расплавленных металлах или сплавах при температуре 600-1000 °С с последующим отделением металла или сплава от отработавшего нитридного ядерного путем механической сепарации или возгонки металла или сплава [5-7]. Существенными недостатками этих способов являются быстрое насыщение образующегося жидкого металла или сплава компонентами топлива и продуктами его деления, а также дополнительное загрязнение компонентов топлива металлом или сплавом, в результате чего не удается достичь полного отделения компонентов оболочки от компонентов топлива, а потому дальнейшие операции переработки компонентов топлива и оболочки представляются сложными и неэффективными.

Наиболее близким к заявленному является способ переработки нитридного ядерного топлива [8], который, как и используемые гидрохимические способы переработки ядерного топлива, включает фрагментацию тепловыделяющих элементов с топливом, нагрев фрагментов тепловыделяющих элементов вместе с оболочкой и топливом до температуры выше 400 °С, преимущественно до температуры от 720 до 850 °С и выдержку при этой температуре в атмосфере газообразных фтора или фторидов азота. Способ позволяет на 100 % переводить компоненты нитридного топлива во фториды для дальнейшей переработки. Однако ввиду высокой химической активности используемых газообразных реагентов фторированию могут подвергаться и компоненты оболочки, вследствие чего переработка топлива известным способом может быть перегружена присутствием в цикле переработки значительной массы элементов оболочки тепловыделяющего элемента. Более того, фтор является очень дорогим и чрезвычайно агрессивным химически, поэтому его использование предполагает соответствующее сложное оборудование с крайне узким диапазоном возможных конструкционных материалов, тщательный контроль и обеспечение дополнительных мер безопасности, что является экономически, экологически и энергетически невыгодным.

Задачей настоящего изобретения является повышение экологической безопасности, экономической и энергетической эффективности.

Для этого предложен способ отделения нитридного ядерного топлива от оболочки фрагментов тепловыделяющих элементов, в котором фрагменты тепловыделяющих элементов, как и в прототипе, вместе с оболочкой и топливом нагревают до температуры не менее 500 °С и выдерживают в газовой атмосфере. При этом способ отличается тем, что выдержку нагретых фрагментов тепловыделяющих элементов осуществляют в атмосфере азота.

Сущность заявленного способа заключается в том, что фрагментированные известным образом тепловыделяющие элементы с отработавшим или отбракованным нитридным ядерным топливом, помещают в камеру или реактор с атмосферой азота при температуре 500 °С и выше. При такой обработке происходит встраивание азота в молекулярную решетку компонентов плотного нитридного ядерного топлива, что сопровождается увеличением параметра молекулярной решетки, уменьшением плотности нитридов и разрыхлением спеченных образцов топлива в микродисперсный порошок. Так при обработке азотом мононитрид урана UN с параметром решетки 4.89 ангстрем и плотностью массы 14.3 г/см3 переходит в смесь полуторного нитрида урана U2N3 с динитридом урана UN2 с параметрами решетки 10.67 и 5.48 ангстрем, соответственно. Плотность массы при этом снижается до 11-12 г/см3.

На макроуровне это приводит к появлению напряженности в спеченных образцах нитридного топлива и к их разрушению до микродисперсного порошка, что сопровождается полным отделением топлива от оболочки фрагмента тепловыделяющего элемента. Благодаря открытой пористости образцов спеченного нитридного топлива и высокой подвижности молекулярного азота при температуре осуществления способа перевод спеченных образцов в порошок происходит достаточно интенсивно, при этом беспористая оболочка тепловыделяющего элемента воздействию азота практически не подвергается. Полученные по вышеописанной схеме порошок нитридного ядерного топлива без дополнительных операций может быть подвергнут дальнейшей конверсии в хлориды или оксиды.

Технический результат, достигаемый заявленным способом, заключается в исключении химически агрессивного газа и упрощении аппаратурного оформления способа, сокращении побочных компонентов на дальнейших этапах переработки нитридного ядерного топлива, в переводе плотных спеченных образцов нитридного топлива в микродисперсный порошок, позволяющим существенно ускорить дальнейшие операции переработки топлива.

Изобретение иллюстрируется таблицей с параметрами и результатами экспериментальной апробации способа, а также рисунками, где на фиг. 1 приведена термодинамическая оценка взаимодействий в системе UN+N2(газ) при температуре 500 и 800 °С; на фиг. 2 приведена фотография таблетки UN до и после обработки в азоте при 700 °С, на фиг. 3 приведены области дифрактограмм образца UN до и после обработки в азоте при 700 °С с характерными для разных нитридов урана угловыми рефлексами.

Экспериментальную апробацию заявленного способа осуществляли на модельных образцах UN. Для этого путем прессования и спекания изготавливали плотные таблетки UN, которые после взвешивания и рентгенофазового анализа размещали в кварцевой пробирке с атмосферой азота, нагревали и выдерживали при температуре эксперимента. Азот в кварцевой пробирке поддерживали при слабом избыточном давлении либо продували. По окончании эксперимента образцы извлекали и анализировали при помощи рентгенофазового анализа. В таблице сведены параметры и результаты экспериментальной апробации способа. В ряде экспериментов совместно с таблеткой UN обработке в атмосфере азота подвергли фрагменты стальной трубки, имитирующей оболочку тепловыделяющего элемента. Видно, что во всех случаях при обработке в азоте таблетки UN были переведены в порошкообразные смеси нитридов урана, в то время как образцы стали воздействию практически не подверглись.

На основании термодинамических оценок предположено и экспериментально показано, что уже при 500 °С образцы UN подвергаются азотированию до U2N3 и UN2, однако кинетика процесса сильно затруднена. При повышении температуры процесс азотирования интенсифицируется. Так, при температуре 700 °С для разрушения (выкрашивания) таблетки UN потребовалось пропустить через пробирку 6.11 л азота, а продукты азотирования по данным рентгенофазового анализа содержали смесь кусков UN с порошками U2N3 и UN2.

Таким образом, заявленный способ позволяет отделить компоненты нитридного ядерного топлива от фрагментов тепловыделяющих элементов, сократить содержание побочных компонентов на дальнейших этапах переработки нитридного ядерного топлива, перевести плотные спеченные образцы нитридного топлива в микродисперсный порошок, что позволит существенно ускорить дальнейшие операции переработки топлива известными способами.

Источники.

1. B.M. Ma, Nuclear Reactor Materials and Applications, 1983.

2. Engineering Journal, 2009, Vol.13, pp. 1-28.

3. RU2079909C1, публ. 20.05.1997.

4. WO2019/132710A1, публ. 04.07.2019.

5. RU2296381, публ. 10.06.2006.

6. US3666425, публ. 30.05.1972.

7. RU2194783, публ. 20.12.2002.

8. Известия Томского политехнического университета, 2005, Т. 308, № 5, C. 85-90.

Способ отделения отработавшего нитридного ядерного топлива от оболочки фрагментов тепловыделяющего элемента, в котором фрагменты тепловыделяющих элементов вместе с оболочкой нагревают до температуры не менее 500 °С и выдерживают в газовой атмосфере, отличающийся тем, что выдержку нагретых фрагментов тепловыделяющих элементов осуществляют в атмосфере азота.



 

Похожие патенты:

Изобретение относится к ядерной энергетике, в частности, к технологии переработки отработавшего нитридного ядерного топлива и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ).

Изобретение относится к ядерной энергетике. Способ переработки тепловыделяющих элементов с нитридным отработавшим ядерным топливом включает растворение их фрагментов до получения электролитного раствора, содержащего соединения актинидов, пригодного для их выделения.

Изобретение относится замыканию ядерного топливного цикла и может быть использовано для возврата урана, выделенного из отработавшего ядерного топлива (ОЯТ), в топливный цикл как легководных реакторов, так и других типов реакторов, работающих на обогащенном уране.

Изобретение относится к ядерной энергетике и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас.

Изобретение относится к способам переработки облученного ядерного топлива (ОЯТ) и предназначено для использования в головных операциях радиохимической технологии переработки ОЯТ реакторов ВВЭР-1000 с целью отделения трития.

Изобретение может быть использовано при электрохимической переработке отработавшего ядерного топлива (ОЯТ) реакторов на быстрых нейтронах. Способ характеризуется тем, что в расплавленный электролит на основе эвтектической смеси хлоридов лития и калия после выделения из него актинидов, лантанидов и щелочноземельных металлов добавляют хлорид переходного металла, в качестве которого используют дихлорид кадмия, при этом процесс ведут при температурах не выше 350°С.

Изобретение относится к области переработки отработавшей топливной композиции жидкосолевого реактора. Композиционная смесь для осаждения оксидов делящихся и осколочных нуклидов из расплава эвтектической смеси LiF-NaF-KF без изменения состава эвтектической смеси, содержащая Li2O, NaF, KF при следующем соотношении компонентов, мол.
Изобретение относится к радиохимической технологии и может быть использовано при переработке отработавшего ядерного топлива и производстве смешанного уран-плутониевого топлива.
Изобретение относится к радиохимической технологии и может быть использовано при переработке облученного ядерного топлива (ОЯТ). Способ растворения волоксидированного ОЯТ включает обработку ОЯТ в гетерогенной системе с участием диоксида азота.
Изобретение относится к области радиохимической технологии и может быть использовано для отделения трития на головных операциях процесса переработки облученного ядерного топлива.
Наверх