Способ изготовления наноструктурированной мишени для производства радионуклида молибден-99

Изобретение относится к способу изготовления наноструктурированной мишени для производства радионуклида молибден-99 и может быть использовано для производства радионуклида молибден-99 (99Мо) высокой удельной активности (без носителя), являющегося основой для создания радионуклидных генераторов технеция-99m (99mTc), имеющих широкое применение в ядерной медицине для диагностических целей. Производство радиоизотопа 99Мо осуществляется по реакции 98Мо(n,γ) и 100Мо(γ, n). Изотоп получают в виде матрицы из активированной окиси алюминия с полостями и каналами с характерными размерами, лежащими в интервале 2-50 нм. На поверхности полостей и каналов нанесен нанослой молибденсодержащего вещества, толщина которого меньше длины пробега атомов отдачи 99Мо в веществе нанослоя. В качестве нанослоя молибденсодержащего вещества используется нерастворимый в воде молибдат алюминия (Аl2[МоO4]3). Техническим результатом является упрощение процедуры выделения радионуклида 99Мо. 1 з.п. ф-лы.

 

Изобретение относится к реакторной технологии получения радионуклидов. Способ изготовления наноструктурированной мишени для производства радионуклида молибден-99 может быть использован для производства радионуклида молибден-99 (99Мо) высокой удельной активности (без носителя), являющегося основой для создания радионуклидных генераторов технеция-99m (99mТс), нашедших широкое применение в ядерной медицине для диагностических целей.

Радионуклид молибден-99 (99Мо) является одним из наиболее востребованных изотопов в ядерной медицине. Он используется в качестве материнского ядра генератора технеция-99m (99mТс), широко применяемого в мире при ранней диагностике онкологических, сердечно-сосудистых и ряда других заболеваний. Более 80% радиодиагностических процедур в мире проводится радиофармпрепаратами, мечеными 99mТс.

Широкое применение 99mТс объясняется сочетанием ядерно-физических свойств, которое обуславливает его преимущество перед другими короткоживущими радионуклидами. Технеций-99m имеет удобную для регистрации энергию гамма-излучения (140 кэВ) и период полураспада (6 часов). Отсутствие у 99mТс бета- и жесткого гамма-излучения снижает дозовые нагрузки на пациентов и персонал диагностических лабораторий медицинских учреждений. Данный радионуклид разрешен к применению для проведения диагностических исследований беременных и новорожденных. Технеций-99m принадлежит к числу радионуклидов, обладающих наименьшей радиотоксичностью.

Традиционный способ наработки 99Мо основан на выделении этого радионуклида из облученного топлива на основе урана высокообогащенного по изотопу 235U. Этот способ включают операции облучения мишеней с ураном в нейтронном потоке ядерного реактора и растворения их после непродолжительной выдержки в водных растворах кислот или щелочей. Образующийся раствор подвергают операции выделения 99Мо в виде отдельной фракции (путем экстракции или сорбции-десорбции), которая подвергается аффинажу с получением чистого препарата 99Мо.

Известен реакторный способ получения радионуклида 99Мо, основанный на деления 235U по действием нейтронов [Герасимов А.С., Киселев Г.И., Ланцов М.Л. "Получение 99Мо в ядерных реакторах". Атомная энергия, том 67, выпуск 1, август 1989, 104-108]. В этом процессе мишень, содержащую двуокись урана с обогащением по изотопу 235U до 90%, облучают в течение 7-10 суток в потоке нейтронов ядерного реактора, а затем перерабатывают одним из традиционных радиохимических способов. Радионуклид 99Мо, выделенный из продуктов деления с помощью процессов экстракции и хроматографии, обладает высокой удельной активностью (≈105 Ки/г), что важно при изготовлении 99Мо/99mТс-генераторов.

Недостатком этого способа является то, что образуется большой объем жидких радиоактивных отходов, содержащих делящийся материал - обогащенный уран. Несмотря на возможность достижения высоких технических показателей процесса (высокий выход целевого продукта, короткий технологический цикл) он связан с выпуском больших объемов высокоактивных жидких отходов, хранение и переработка которых в значительной мере снижает экономические показатели производства. Необходима специальная многооперационная обработка этих отходов с целью выделения урана и подготовки отходов к захоронению.

Другим сдерживающим фактором для дальнейшего расширения этого способа производства 99Мо является необходимость ограничить или даже свести к нулю оборот в гражданской сфере высокообогащенного 235U, поскольку распространение этого делящегося материала несет опасность террористических акций. Приняты программы, в частности, программа RERTR (Reduced Enrichment for Research and Test Reactors), по сокращению оборота высокообогащенного 235U в мирных секторах экономики, в соответствии с которой исследовательские реакторы, используемые для производства 99Мо, будут постепенно переводиться на низкообогащенное урановое топливо. Это же касается и мишеней, которые также будут переводиться на низкообогащенный уран.

В результате ориентация современного производства 99Мо на использование высокообогащенного урана, на фоне постепенного выведения 235U из гражданского оборота в соответствии с концепцией МАГАТЭ о «нераспространении», создает дополнительные риски для потребителей 99Мо.

Известен альтернативный способ получения 99Мо по реакции радиационного захвата 98Мо(n,γ)99Мо - активационный. При облучении нейтронами мишени, содержащей молибден, обогащенный по изотопу 99Мо, при среднем потоке тепловых нейтронов 1⋅1014 см-2×с-1 может быть получена удельная активность 99Мо до 6-8 Ки/г [Скуридин B.C., Стасюк Е.С., Нестеров Е.А., Ларионова Л.А. Разработка высокоактивных генераторов технеция-99m на основе обогащенного молибдена-98. // Медицинская физика, №4, 2010, 41-47]. Такой способ получения 99Мо имеет ряд преимуществ по сравнению с «осколочным» методом: дешевизна исходного сырья, исключение из технологического оборота 235U, отсутствие долгоживущих радиоактивных отходов, значительное снижение капитальных затрат, обусловленное более низкими требованиями к условиям обеспечения радиационной безопасности.

Основной недостаток активационного способа производства 99Мо, препятствующий его широкому внедрению в практику, состоит в низкой удельной активности целевого радионуклида из-за присутствия в мишени изотопного носителя 98Мо. Материал такого качества неэффективно использовать в стандартном 99Мо/99mТс-генераторе сорбционного типа, поскольку требуются колонки большего размера, в результате чего увеличивается масса радиационной защиты. Для элюирования 99mТс из такой колонки понадобится большой расход жидкости, что приведет к снижению объемной активности раствора и необходимости последующей концентрации 99mТс.

Для устранения этой проблемы предложен вариант получения 99Мо по реакции радиационного захвата 98Мо(n,γ), основанный на эффекте Сцилларда-Чалмерса, с использованием в качестве мишеней структурированных наночастиц молибдена или его соединений.

Известно, что ядро 99Мо, образующееся в результате реакции радиационного захвата тепловых нейтронов 98Мо(n,γ), в момент снятия возбуждения испусканием γ-квантов приобретает энергию отдачи, которой достаточно для разрыва химических связей атомов в решетке. Энергия отдачи ~30÷100 эВ вызывает перемещение образующихся атомов 99Мо, которые способны образовывать новые соединения, переходить из одной фазы в другую и т.д. Доля атомов отдачи 99Мо, покидающих материнское соединение молибдена, зависит от соотношения длин пробега и размера наночастиц молибдена.

Исследования этого способа получения 99Мо высокой удельной активности проводились в России и за рубежом [Tomar, В.S.; Steinebach, О.М.; Terpstra, В.Е.; Bode, P.; Wolterbeek, Н.Т.: Studies on production of high specific activity 99Mo and 90Y by Szilard Chalmers reaction: Radiochim. Acta. 2010, 98, 499-506]. В европейском патенте [Wolterbeek H.T. "A process for the production of no-carrier added 99Mo". European patent. EP 2131369 A 16.06.2008. Technische Universiteit Delft (NL)] описан процесс получения 99Mo путем облучения растворов органических соединений молибдена гексакарбонила Мо(СО)6 и диоксо-диоксината [C4H3(O)-NC5H3]2-MoO2 в дихлорметане СН2Сl2 с последующей экстракцией 99Мо из органической фазы в водную. Полученный выход составил от 10% (при факторе обогащения 40) до 20% (при факторе обогащения 20).

Российские авторы предложили использовать в качестве стартового материала соединения молибдена в виде частиц Мo2С размером 5÷100 нанометров [Патент РФ RU 2426184 С1. 02.07.2010. «Способ получения радионуклида 99Мо». Авторы: Маслаков Г.И., Радченко В.М, Ротманов К.В. и др.]. Облучение тугоплавких радиационно и термически устойчивых наночастиц Мо2С они проводили нейтронами с плотностью потока более 1014 см-2с-1 в течение 7÷15 суток. По мнению авторов, в результате эффекта Сцилларда-Чалмерса в процессе облучения на поверхности наночастиц должна повышаться концентрация 99Мо, т.к. поверхность является барьером, на котором будут накапливаться вылетевшие из решетки радионуклиды. После облучения авторы проводили выделение 99Мо из поверхностного слоя стартового материала растворением этого слоя в смеси кислот или смеси щелочей. Однако большой разброс размеров наночастиц стартового материала (5÷100 нм) привел к низкой эффективности процесса. Частицы менее 5 нм вымывались из порошка в раствор, а из частиц с размером ~100 нм поступление ядер отдачи в поверхностный слой происходило лишь с небольшой глубины, что привело к низким показателям выхода продукта. При стравливании поверхностного слоя частиц молибдена кислотой или щелочью в раствор попадал в основном стартовый материал частиц - 98Мо. Полученный выход 99Мо составил 30,2÷37,4%, при факторе обогащения 1,6÷1,5. Основной недостаток такого способа производства 99Мо - низкая удельная активность получаемого радионуклида. Авторы приводят значение удельной активности 99Мо, полученной по этому способу, на уровне 1 Ки/г, что уступает удельной активности осколочного 99Мо около пяти порядков величины (≈105 Ки/г). При удельной активности 99Мо на уровне 1 Ки/г невозможно использовать стандартный 99Мо/99mТс-генератор сорбционного типа.

За прототип выбран способ получения наноструктурированной мишени для производства радиоизотопа 99Мо по реакции радиационного захвата 98Мо(n,γ), которая представляет собой композицию буфера из твердого вещества и наночастиц, содержащих молибден. [Патент РФ RU 2588594 C1 15.06.2015. «Способ изготовления наноструктурированной мишени для производства радиоизотопа молибдена - 99». Артюхов А.А., Кравец Я.М., Меньшиков Л.И., Рыжков А.В., Семенов А.Н., Удалова Т.А., Чувилин Д.Ю.]

В этом патенте мишень представляет собой нанослой оксида молибдена (МoО3), нанесенный на поверхность полостей и каналов матрицы из активированной окиси алюминия, служащей коллектором атомов отдачи 99Мо. Характерный размер полостей и каналов матрицы из активированной окиси алюминия находится в интервале 2-50 нм, что сравнимо с длиной пробега атомов отдачи 99Мо в молибденсодержащих веществах ~ 10 нм [Л.И. Меньшиков, А.Н. Семенов, Д.Ю. Чувилин. Расчет выхода атомов отдачи реакции 98Мо(n,γ) из наночастиц дисульфида молибдена. Атомная энергия. Т.114, вып. 4, 2013, с. 226-229].

Разделение материнского молибдена и буфера осуществляли путем элюирования оксида молибдена с помощью 20% раствора аммиака в воде.

Недостатком этого метода являются: сложность извлечения целевого радионуклида 99Мо из оксида алюминия; невозможность повторного использования такой мишени и значительные потери молибдена (-2,7%) при вымывании его из окиси алюминия. Это существенно при использовании для изготовления мишени дорогого высокообогащенного 98Мо.

Раскрытие изобретения.

Преимущества получения радионуклида 99Мо активационным методом, основанном на эффекте Сциларда-Чалмерса, могут проявиться в полной мере лишь при простой процедуре извлечения целевого радионуклида из мишени, исключающей ее разрушение.

Техническим результатом является упрощение процедуры выделения радионуклида 99Мо и удешевление технологического процесса изготовления мишени за счет ее многократного использования. Это достигается в результате использования в качестве молибденсодержащего вещества нерастворимого в воде молибдата алюминия (Аl2[МоO4]3), что, в свою очередь, позволяет использовать в качестве буфера растворимый в воде хлорид щелочного металла.

Для достижения указанного результата предложен способ изготовления наноструктурированной мишени, где в качестве матрицы используется активированная окись алюминия с полостями и каналами с характерными размерами лежащими в интервале 2-50 нм, на поверхности которых формируют нанослой из молибдата алюминия. После завершения формирования нанослоев, состоящих из молибдата алюминия, в полученную матрицу вводят хлорид щелочного металла методом пропитки гранул насыщенным раствором хлорида щелочного металла, либо методом окунания гранул в расплав хлорида щелочного металла.

Гранулы активированной окиси алюминия пронизаны разветвленной сетью открытых полостей и каналов, имеющих средний характерный размер 20 нм, что позволяет сформировать на поверхностях полостей и каналов нанослой молибдата алюминия и хлорида щелочного металла. Важно, что самоорганизованный массив пор, формирующийся в процессе изготовления этого сорбента, отличается равномерной плотностью. Это создает возможность получения равномерного распределения Мо и хлорида металла по объему гранулы Al2O3.

Удаление буфера (хлорида щелочного металла), содержащего в себе атомы отдачи 99Мо, осуществляется путем элюирования хлорида металла дистиллированной водой.

В качестве примера реализации предложенного способа приведем последовательность операций изготовления образца наноструктурированной мишени.

Операция 1. Подготовка гранул Аl2O3. Товарный гранулированный оксид алюминия прокаливали при температуре 700÷750°С в течение 3 часов для удаления сорбированных веществ и уменьшения его растворимости.

Операция 2. Формирование слоев МoО3 на поверхности каналов активированной окиси алюминия осуществляли пропиткой гранул водным раствором парамолибдата аммония (NH4)6Mo7O24 (растворимость при 20°С 20 г / 100 мл Н2O) и их последующей термообработкой:

- 5,041 г активированной гранулированной окиси алюминия погружают в 20% раствор парамолибдата аммония и выдерживают в нем в течение суток. Затем раствор сливают и взвешивают влажные гранулы. В результате такой операции гранулы вбирают в себя 6,411 г раствора, т.е. 1,370 г раствора на 1 г Аl2O3;

- после пропитки гранулы сушат в токе аргона марки ВЧ при температуре 130°С в течение 2-х часов. Взвешивание гранул по завершении процесса осушки показало, что была высажена пленка парамолибдата аммония массой 2,206 г;

- высушенные гранулы, с парамолибдатом аммония в порах, подвергают термической обработке при 700÷750°С в атмосфере кислорода, для разложения парамолибдата до образования МоO3.

Операция 3. Формирование нанослоя молибдата алюминия (Аl2[МоO4]3) осуществлялось путем дополнительного прокаливания гранул Аl2O3 при температуре 800°С в течение 6 часов. По результатам химического анализа (методом ICP-AES) содержание молибдена в образце составило 0,23 г/г.

Операция 4. После этого гранулы пропитываются хлоридом калия KCl путем обработки их раствором KCl (200 г/л). После пропитки гранулы сушили в токе аргона марки ВЧ при температуре 130°С в течение 2-х часов. Проверочное элюирование хлорида калия KCl из мишени проводили дистиллированной водой. По результатам химического анализа (методом ICP-AES) содержание калия в образце после промывки составляло 0,6%.

1. Способ изготовления наноструктурированной мишени для производства радиоизотопа 99Мо по реакции 98Мо(n,γ) и 100Мо(γ, n) в виде матрицы из активированной окиси алюминия с полостями и каналами с характерными размерами, лежащими в интервале 2-50 нм, а на поверхности полостей и каналов нанесен нанослой молибденсодержащего вещества, толщина которого меньше длины пробега атомов отдачи 99Мо в веществе нанослоя, отличающийся тем, что в качестве нанослоя молибденсодержащего вещества используется нерастворимый в воде молибдат алюминия (Аl2[МоO4]3).

2. Способ по п. 1, отличающийся тем, что в качестве буфера используется растворимый в воде хлорид щелочного металла.



 

Похожие патенты:

Изобретение относится к технологии выделения и очистки препарата радионуклида 63Ni и выделения и очистки никеля из промышленных отходов. Очистка целевого радионуклида от 59Fe, 60Co, 51Cr, 54Mn, 124Sb, 46Sc, 117Sn проводится осаждением указанных примесей при рН=5-6 после изотопного разбавления неактивным кобальтом и окисления последнего персульфатом калия или натрия.

Изобретение относится к защитному кожуху для аппарата-источника радиоактивного излучения и устройству контроля безопасности. Устройство содержит корпус, снабженный приемной камерой для размещения в нем аппарата-источника радиоактивного излучения, торцевым отверстием и выходным отверстием для лучей, через которое испускаются лучи, генерируемые аппаратом-источником радиоактивного излучения; торцевую крышку, закрывающую торцевое отверстие корпуса и снабженную герметичной камерой, которая сообщается с приемной камерой; соединительный элемент, расположенный между торцевой крышкой и корпусом и снабженный отверстием, обеспечивающим сообщение герметичной камеры торцевой крышки с приемной камерой корпуса.

Изобретение относится к устройству для генерации импульсных нейтронных потоков. В устройстве предусмотрен импульсный источник напряжения, подключенный к двум идентичным диодам для ускорения протонов, размещенным внутри рабочего вакуумного объема напротив друг друга, электроды которых представляют собой сектора частично прозрачной сферы, связанные определенными соотношениями.
Изобретение относится к области радиобиологии, к измерению активности радионуклида 90Sr для радиационного контроля профессиональных работников атомной промышленности.

Изобретение относится к вакуумной нейтронной трубке и может быть использовано при разработке генераторов нейтронов для активационного анализа сплавов и соединений.

Изобретение относится к ядерной технике и предназначено для обеспечения контролируемого пуска реактора путем вывода реактора на рабочий уровень мощности после штатных и нештатных остановок.

Изобретение относится к источнику нейтронного излучения, предназначенному для проведения геофизических исследований нефтяных, рудных и газовых месторождений нейтронными методами.

Изобретение относится к области физико-химического разделения радионуклидов, в частности к способу получения радионуклида стронция-82, и может быть использовано в ядерной медицине.

Изобретение относится к технологии получения радиоизотопов для ядерной медицины на ускорителях заряженных частиц. Способ получения радиоизотопа стронций-82 (82Sr) по реакции Rb(p,xn)82Sr включает облучение мишени протонами, в качестве которой используют раствор или расплав одного или нескольких химических соединений рубидия или их взвесь в жидком носителе, и осуществление их циркуляции в замкнутом контуре через зону облучения протонами, нарабатывая в мишени по реакции 85Rb(p,4n)82Sr и(или) реакции 87Rb(p,6n)82Sr радиоизотоп 82Sr, и выделение 82Sr из облученной мишени после облучения или непосредственно во время облучения радиохимическим методом.

Изобретение относится к области получения короткоживущих радиоактивных фармацевтических препаратов в количествах порядка единичной дозы. Генератор биомаркеров включает в себя ускоритель частиц и систему микросинтеза радиоактивных фармацевтических препаратов.
Изобретение относится к способу лазерной наплавки металлических покрытий и может найти применение при формировании защитных шликерных покрытий на конструкционных материалах.
Наверх