Способ нанесения биоинертных гафниевых покрытий, модифицированных ионами азота, на титановые имплантаты

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии и раскрывает способ нанесения биоинертных гафниевых покрытий, модифицированных ионами азота, на титановые имплантаты. Способ включает электрический взрыв гафниевой фольги массой 100-600 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней биоинертного гафниевого покрытия, азотирование в течение 3-5 часов при температуре 500-600°С и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 20-40 Дж/см2, длительности импульсов 150-200 мкс и количестве 3-5 импульсов. Способ позволяет сформировать поверхностный слой с высокой адгезией покрытия, низкой шероховатостью, гомогенизированной структурой и антибактериальной активностью, что увеличивает срок службы имплантатов. Изобретение может быть использовано в медицинской технике, в травматологии и ортопедии. 3 ил., 2 пр.

 

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности, к технологии получения на поверхности титановых имплантатов, работающих в организме человека, гафниевых покрытий, модифицированных ионами азота, которые могут быть использованы в области медицины с целью получения биосовместимых низкомодульных сплавов системы Ti-Ta-N.

Известно покрытие на имплантат из титана и его сплавов и способ его приготовления (RU 2502526, МПК A61L 27/06, A61L 27/02, А61Е 2/02, опубл. 27.12.2013). Покрытие на имплантат из титана и его сплавов состоит из двух слоев, первый слой состоит из оксидов титана, в основном TiO2, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180 мкм при следующем соотношении компонентов, мас. %: оксид титана, в пересчете на TiO2 - 10-30; гамма-оксид алюминия - 70-90. Способ получения покрытия включает механическую обработку поверхности имплантата, обезжиривание, термическую обработку для получения на поверхности имплантата оксидов титана, последующее нанесение второго слоя. Обезжиривание ведут в растворе щелочи - KOH, NaOH, термическую обработку осуществляют в интервале температур 700-800°C с последующим получением двухслойного покрытия из оксида титана и оксида алюминия, при этом вначале наносят гидроксид алюминия в нагретом до 60-90°С растворе алюминатов щелочных металлов с последующей выдержкой в этом растворе до комнатной температуры, дальнейшей промывкой, сушкой и термической обработкой покрытия при температуре 500-600°С для получения вторичного покрытия из оксида алюминия.

Недостатком способа является низкая адгезия вторичного биоинертного или биосовместимого покрытия.

Наиболее близким к заявляемому изобретению является способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты (RU №2686092 МПК A61L 27/06, A61F 2/02, С23С 4/00, опубл. 24.04.2019). Способ нанесения биоинертных покрытий на основе циркония на титановые имплантаты включает электрический взрыв циркониевой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе циркония.

Недостатком способа является низкая антибактериальная активность биоинертных электровзрывных покрытий на основе циркония.

Технической проблемой, решаемой заявляемым изобретением является получение биоинертного или биосовместимого гафниевого покрытия, модифицированного ионами азота, на поверхности различных титановых имплантатов, обладающего антибактериальной активностью.

Существующая техническая проблема решается тем, что предложен способ нанесения биоинертных гафниевых покрытий, модифицированных ионами азота, на титановые имплантаты, включающий электрический взрыв гафниевой фольги массой 100-600 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней биоинертного гафниевого покрытия, азотирование в течение 3-5 часов при температуре 500-600°С и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 20-40 Дж/см2, длительности импульсов 150-200 мкс и количестве 3-5 импульсов.

Технический результат, получаемый при осуществлении изобретения, заключается в том, что, при электрическом взрыве гафниевой фольги продукты разрушения образуют плазменную струю, служащую инструментом формирования на поверхности титановых имплантатов покрытия на основе гафния. Электровзрывное напыление приводит к формированию гафниевого покрытия с высокой адгезией с титановым имплантатом. Азотирование электровзрывных гафниевых покрытий приводит к внесению в поверхностный слой ионов азота, которые обеспечивают антибактериальный эффект. Импульсно-периодическая электронно-пучковая обработка приводит к формированию в покрытии высокодисперсной и однородной структуры. Поверхность покрытия приобретает зеркальный блеск. Преимущество заявляемого способа по сравнению с прототипом заключается в формировании поверхностного слоя с высокой адгезией покрытия с подложкой из титана, низкой шероховатостью и гомогенизированной структурой, обладающего антибактериальным эффектом, что увеличивает срок службы имплантатов, и расширяет область практического применения.

Пролиферативную активность клеточных линий определяли методом непосредственного подсчета количества клеток после их контакта с образцами с нанесенными покрытиями с помощью оптического микроскопа. Исследования проводили на клеточной культуре фибробластов подкожной соединительной ткани мыши (L929). Линия получена из коллекции культур клеток ФГУН ГНЦ «Вектор». Количество клеток определяли методом непосредственного подсчета при помощи 4-х сеточной камеры Горяева и оптического инвертированного микроскопа Axio Observer (Zeiss). Для подсчета клеток использовали витальную окраску трипановым синим для одновременного определения количества живых и погибших клеток. Клеточную линию культивировали в среде Игла MEM с добавлением 10% фетальной бычьей сыворотки (FBS) и 5% пенициллин-стрептомицина-глутамина в сосудах площадью 75 см2. Культивирование клеток проводили при температуре 37±1°С и 5% CO2 в течение 24 часов. Культуру клеток рассевали в культуральные 24-луночные планшеты (общий объем 2 мл) в количестве 50000 клеток на одну лунку. Образцы помещали на монослой клеток в каждую лунку. Клетки инкубировали с образцами в течение 24 часов. В ходе эксперимента за контроль принимали культуру, не контактировавшую с образцами. После инкубирования производили непосредственный подсчет клеток. В результате проведенных исследований было выявлено, что процент выживших клеток на поверхности биоинертных гафниевых покрытий, модифицированных ионами азота, составляет 100%, что указывает на высокую пролиферативную активность фибробластов. При этом на образце без покрытия (титановый сплав ВТ6) процентное содержание выживших клеток составило 91%.

Проводили исследования на растровом электронном микроскопе образцов с биоинертными гафниевыми покрытиями, модифицированными ионами азота. Для этого образцы с высаженными на их поверхность культурами клеток промывали и фиксировали в специальных растворах, а затем высушивали в гексане. По окончании процесса высушивания культуру извлекали из держателя и помещали в эксикатор с влагопоглотителем для временного хранения. На полученных изображениях проводили подсчет клеток фибробластов с помощью программного обеспечения «Photoshop». В результате статистического анализа полученных изображений было выявлено, что наибольшее количество клеток обнаружено на образцах с гафниевым покрытием, модифицированным ионами азота. На образцах без покрытия (титановый сплав ВТ6) среднее количество клеток было на 19% меньше.

Противомикробная активность образцов была проверена методом подсчетов жизнеспособных бактерий. В этом методе in vitro динамика уничтожения бактерий в образце измерялась путем подсчета остаточных бактерий по сравнению с контролем. Культуры микроорганизмов Staphylococcus aureus (MRSA) культивировали в течение 24 часов при температуре 37±1°С, затем готовили взвесь микроорганизмов в концентрации 105 КОЕ/мл. Staphylococcus aureus 209 - грамположительные шаровидные клетки диаметром 0,5-1,5 мкм. Измерение эффективности сорбции поводили на бактериях Staphylococcus aureus согласно рекомендациям (Ворошилова А.А. Окисляющие нефть бактерии показатели интенсивности биологического окисления нефти в природных условиях / А.А. Ворошилова, Е.Д. Дианова // Микробиология. - 1952. - Т. 21. - С. 408-415.). Для определения эффективности сорбции, образцы стерилизованного в автоклаве продукта с массой 100 мг помещали в стерильные колбы и добавляли 30 мл бактериальной суспензии с концентрацией 1,0×103 КОЕ/мл. Адсорбцию микроорганизмов на образцах проводили при постоянном перемешивании суспензии в течение 30 мин на магнитной мешалке РЕ-6600 (Ecroskhim, Россия) со скоростью 500 об/мин. Далее пробы центрифугировали в течение 3 минут при скорости вращения 1300 об/мин и осуществляли посев 1 мл надосадочной жидкости на МПА. Посевы инкубировали в термостате при температуре 37±1°С в течение 24 ч. Через сутки после инкубирования проводили подсчет колоний. Остаточные жизнеспособные бактерии (КОЕ/мл) подсчитывали после 3 и 6 ч инкубации при 37°С. Микроорганизмы в PBS использовали только в качестве контролей. Для каждого образца были проведены два независимых эксперимента с пятью повторениями на образец на один эксперимент. Статистический анализ проводили с помощью непарного t-теста Стьюдента, а р<0,05 считали статистически значимым. Биоинертное гафниевое покрытие, модифицированное ионами азота, обладает антибактериальным эффектом. Количество КОЕ уменьшается после 6 часов культивирования до 7630 с титановым имплантатом без покрытия (титановый сплав ВТ6) - 10 230.

Цитотоксическое действие образцов с биоинертными гафниевыми покрытиями, модифицированными ионами азота, определяли при помощи МТТ-теста на клеточной культуре фибробластов подкожной соединительной ткани мыши (L929). (ФБУН ГНЦ ВБ «Вектор», Россия). Конечная концентрация клеток составила 0,5⋅104 клеток/100 мкл в лунке 96-луночного микропланшета. Клетки культивировали в виде монослоя в среде Игла MEM (Lonza, Швейцария) с добавлением 10% FCS, 2 тМ L-глутамина и 5% пенициллин/стрептомицина/глутамина. Культивирование клеток проводили при температуре 37±1°С и 5% CO2 в течение 24 часов. После инкубирования питательную среду осторожно удаляли и два раза промывали клетки раствором DPBS. Клетки с образцами инкубировали при температуре 37±1°С и 5% CO2 в течение 24, 48 и 72 часов. Затем в каждую лунку добавляли по 100 мкл питательной среды и по 10 мкл раствора МТТ (3-4,5-диметилтиазол-2,5 дифенил тетразилия бромида). Инкубирование с раствором МТТ проводили в течение 2 часов при температуре 37±1°С и 5% CO2. По окончании инкубирования питательную среду осторожно удаляли и добавляли в каждую лунку по 100 мкл диметилсульфоксида для растворения кристаллов формазана. Через 15 минут определяли оптическую плотность на микропланшетном спектрофотометре Multiscan FC при длине волны 620 нм. Далее вычисляли процент живых клеток (CL) по формуле CL=(As/Ac)⋅100%, где As - оптическая плотность исследуемого образца, Ас - оптическая плотность контрольного образца. Контрольной группой служили клетки без добавления образца с покрытиями. Для статистической обработки данных использовались параметрические методы с уровнем достоверности р≤0,05. Образцы с гафниевыми покрытиями, модифицированными ионами азота, не являются токсичными, что подтверждают исследования цитотоксичности. При этом, количество выживших клеток после контакта с образцом с гафниевыми покрытиями, модифицированными ионами азота на 3% выше, чем у образца без покрытия (титановый сплав ВТ6).

Исследования методом сканирующей электронной микроскопии показали, что при электровзрывном напылении на титановых имплантатах путем электрического взрыва гафниевой фольги при поглощаемой плотности мощности 1,5-1,8 ГВт/м2 происходит формирование гафниевого покрытия. Указанный режим, при котором поглощаемая плотность мощности составляет 1,5-1,8 ГВт/м2, установлен эмпирически и является оптимальным, поскольку при интенсивности воздействия ниже 1,5 ГВт/м2 не происходит образование рельефа между покрытием и подложкой из титана, вследствие чего возможно отслаивание покрытия, а выше 1,8 ГВт/м2 происходит формирование развитого рельефа поверхности напыляемого покрытия. При значении массы гафниевой фольги менее 100 мг покрытие неоднородно распределяется на поверхности титанового имплантата. При значении массы гафниевой фольги более 600 мг покрытие на основе тантала на поверхностях титановых имплантатов обладает большим количеством дефектов. Граница электровзрывного покрытия с подложкой не является ровной, что позволяет увеличить адгезию покрытия с подложкой.

При времени азотирования менее 3 часов и температуре ниже 500°С поверхностный слой электровзрывных гафниевых покрытий слабо насыщается ионами азота, что не обеспечивает антибактериальный эффект формируемым покрытиям. При времени азотирования более 5 часов и температуре выше 600°С в поверхностном слое электровзрывных гафниевых покрытий образуются твердые растворы на основе азота и нитриды гафния, что повышает твердость и износостойкость этих покрытий, но делает их непригодными для эксплуатации в организме человека. В этом случае начинает изнашиваться костная ткань.

Импульсно-периодическая электронно-пучковая обработка поверхностного слоя приводит к формированию в нем более дисперсной и однородной структуры. Указанный режим является оптимальным, поскольку при поверхностной плотности энергии меньше 20 Дж/см2, длительности импульсов короче 150 мкс, количестве импульсов менее 3 имп. не происходит образования однородной структуры в покрытии. При поверхностной плотности энергии больше 40 Дж/см2, длительности импульсов длиннее 200 мкс, количестве импульсов более 5 имп. происходит формирование рельефа поверхности.

Микротвердость измеряли на микротвердомере HVS-1000A. Значения микротвердости сформированных покрытий находятся в интервале 2500-2540 МПа. Нанотвердость измеряли с использованием системы Agilent U9820A Nano Indenter G200. Значения нанотвердости сформированных покрытий составляет 2530 МПа. Модуль упругости сформированных покрытий составил 137 ГПа, модуль сдвига 30,2 ГПа, предел текучести 230 МПа.

Способ поясняется рисунками, где:

на фиг. 1 представлена структура поперечного сечения поверхностного слоя биоинертного гафниевого покрытия, модифицированного ионами азота, -покрытие получено на титане марки ВТ6;

на фиг. 2 - структура поперечного сечения поверхностного слоя биоинертного гафниевого покрытия, модифицированного ионами азота и титановой подложкой (титановый сплав ВТ6);

на фиг. 3 - структура биоинертного гафниевого покрытия, модифицированного ионами азота.

Примеры конкретного осуществления способа:

Пример 1.

Обработке подвергали титановый штифт (ввинчивается в челюстную кость) дентального имплантата площадью 1 см2. Электровзрывное напыление гафниевого покрытия производили на установке ЭВУ 60/ЮМ (Автоматизированная электровзрывная установка для повышения эксплуатационных характеристик материалов / Ю.Д. Жмакин, Д.А. Романов, Е.А. Будовских и др. // Промышленная энергетика. - 2011. - №6. С. 22-25). Использовали гафниевую фольгу массой 100 мг. Сформированной плазменной струей оплавляли поверхность титанового штифта дентального имплантата при поглощаемой плотности мощности 1,5 ГВт/м2 и формировали на ней электровзрывное покрытие на основе гафния. Азотирование проводили в течение 3 часов при температуре 500°С. Последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия проводили при поглощаемой плотности энергии 20 Дж/см2, длительности импульсов 150 мкс и количестве импульсов 3 имп. Азотирование и последующую импульсно-периодическую электронно-пучковую обработку проводили на установке «КОМПЛЕКС» (объект инфраструктуры зарегистрирован на сайте http://www.ckp-rf.ru, https://www.hcei.tsc.ru/ru/cat/unu/unikuum/03_06.html). Давление азота в камере составляло 105 Па. Установка «КОМПЛЕКС» позволяет в едином вакуумном цикле осуществлять в любой последовательности и необходимом количестве процессы плазменного азотирования поверхности, плазменно-ассистированного электродугового напыления пленок и покрытий и электронно-пучкового миксинга напыленного слоя.

Получили биоинертное гафниевое покрытие, модифицированное ионами азота, с высокой адгезией покрытия с подложкой на уровне когезии, обладающее антибактериальной активностью.

Пример 2.

Обработке подвергали титановую пластину Т-образную косую площадью 15 см2, применяемую для остеосинтеза дистального метаэпифиза лучевой кости. Электровзрывное напыление гафниевого покрытия производили на установке ЭВУ 60/1 ОМ (Автоматизированная электровзрывная установка для повышения эксплуатационных характеристик материалов / Ю.Д. Жмакин, Д.А. Романов, Е.А. Будовских и др. // Промышленная энергетика. - 2011. - №6. С. 22-25). Использовали гафниевую фольгу массой 600 мг. Сформированной плазменной струей оплавляли поверхность Т-образной косой пластины при поглощаемой плотности мощности 1,8 ГВт/м2 и формировали на ней электровзрывное покрытие на основе гафния. Азотирование проводили в течение 5 часов при температуре 600°С. Последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия проводили при поглощаемой плотности энергии 40 Дж/см2, длительности импульсов 200 мкс и количестве импульсов 5 имп. Азотирование и последующую импульсно-периодическую электронно-пучковую обработку проводили на установке «КОМПЛЕКС» (объект инфраструктуры зарегистрирован на сайте http://www.ckp-f.ru https://www.hcei.tsc.ru/ru/cat/unu/unikuum/03_06.html). Давление азота в камере составляло 105 Па. Установка «КОМПЛЕКС» позволяет в едином вакуумном цикле осуществлять в любой последовательности и необходимом количестве процессы плазменного азотирования поверхности, плазменно-ассистированного электродугового напыления пленок и покрытий и электронно-пучкового миксинга напыленного слоя.

Получили биоинертное гафниевое покрытие, модифицированное ионами азота, с высокой адгезией покрытия с подложкой на уровне когезии, обладающее антибактериальной активностью.

Предлагаемый способ позволяет сформировать поверхностный слой с высокой адгезией покрытия с подложкой из титана, низкой шероховатостью, гомогенизированной структурой и антибактериальной активностью, что увеличивает срок службы имплантатов, и расширяет область практического применения.

Способ нанесения биоинертных гафниевых покрытий, модифицированных ионами азота, на титановые имплантаты, включающий электрический взрыв гафниевой фольги массой 100-600 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности титанового имплантата при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва, формирование на ней биоинертного гафниевого покрытия, азотирование в течение 3-5 часов при температуре 500-600°С и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 20-40 Дж/см2, длительности импульсов 150-200 мкс и количестве 3-5 импульсов.



 

Похожие патенты:

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности к технологии получения на поверхности титановых имплантатов, и раскрывает способ нанесения биоинертных танталовых покрытий, модифицированных ионами азота, на титановые имплантаты.

Изобретение относится к материалам для нанесения композиционных износостойких покрытий методами газотермического наплавления и может быть использовано для получения износостойких покрытий рабочих органов машин, таких как землеройные, бурильные, почвообрабатывающие и посевные, работающих в интенсивном контакте с абразивной средой.

Изобретение относится к способу плазменного напыления покрытия на рабочую поверхность цилиндра блока цилиндров поршневого двигателя внутреннего сгорания. Способ плазменного напыления для нанесения стального или керамического покрытия на рабочую поверхность цилиндра из алюминия в блоке цилиндров поршневого двигателя внутреннего сгорания включает нанесение покрытия на рабочую поверхность цилиндра блока цилиндров, по меньшей мере частично, при скорости вращения горелки 600-800 об/мин, скорости подачи распыляемого материала 80-180 г/мин, скорости продвижения горелки 24-75 мм/сек.

Изобретение относится к способу получения покрытий с интерметаллидной структурой из порошковых материалов с высокой адгезионной прочностью. Техническим результатом изобретения является получение интерметаллидного покрытия с регулируемой структурой.

Изобретение относится к металлургии, а именно к получению покрытий из сплавов цветных металлов плавлением. Способ получения многокомпонентных покрытий из цветных металлов включает переплав исходных металлических материалов на подложке электрической дугой с нерасходуемым вольфрамовым электродом в атмосфере инертного газа, причем исходные металлические материалы используют в виде заготовок из скрученных проволок, пакета пластин или смеси порошков, приготовленных из Al, Ti, Ni, Cr, Fe, Mo, Mn, Cu, Zn, W, Nb, Zr, Та или их сплавов, а переплав осуществляют в импульсном режиме, обеспечивающем динамический режим горения электрической дуги, с амплитудой импульсов тока 100-400 А, длительностью импульсов 20-500 мкс, частотой следования импульсов 200-5000 Гц, дежурным током на интервале между импульсами 12-50 А, при перемещении подложки относительно электрода.

Изобретение относится к элементу скольжения и способу его производства, элемент скольжения может быть использован на участках скольжения двигателей внутреннего сгорания, которые работают в высокотемпературной среде.

Изобретение относится к области газотермических технологий и может быть использовано при нанесении порошковых покрытий методом низкоскоростного газопламенного напыления.

Изобретение относится к способу нанесения состава для поверхностного упрочнения на поверхность бурового инструмента. Технический результат заключается в повышении износостойкости бурового инструмента.

Изобретение относится к области медицинской техники, а именно технологии формирования пористых биоинертных металлических покрытий на внутрикостных частях титановых имплантируемых конструкций.

Изобретение относится к способам нанесения покрытий, в частности к способу нанесения покрытий на рабочую поверхность цилиндра блока цилиндров двигателя внутреннего сгорания.

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии, в частности к технологии получения на поверхности титановых имплантатов, и раскрывает способ нанесения биоинертных танталовых покрытий, модифицированных ионами азота, на титановые имплантаты.
Наверх