Устройство считывания с временной задержкой и накоплением сигналов в цифровом виде с многоэлементных фотоприемников инфракрасного излучения

Изобретение относится к области интегральной микроэлектроники и касается устройства считывания с временной задержкой и накоплением (ВЗН) сигналов в цифровом виде с многоэлементных фотоприемников инфракрасного излучения. Устройство включает m каналов считывания. Каждый из m каналов считывания в своем составе имеет n ячеек считывания, шину сброса, шину опорного напряжения компаратора, шину сигнала интегрирования, шину тактирующего сигнала ВЗН ячеек и блок из n ВЗН ячеек, соединенных так, что выход каждой следующей ВЗН ячейки соединен с соответствующим входом последующей. Входы каждой ВЗН ячейки соединены с шиной сигнала интегрирования и с шиной тактирующего импульса. Каждая ячейка считывания по выходу соединена с одним из входов соответствующей ВЗН ячейки. Каждая ячейка считывания выполнена в составе интегратора фототока, компаратора, триггера-защелки. Технический результат заключается в расширении динамического диапазона, обеспечении возможности изменения передаточной характеристики и уменьшении размеров схемы ВЗН регистра. 1 з.п. ф-лы, 6 ил.

 

Устройство считывания с временной задержкой и накоплением сигналов в цифровом виде с многоэлементных фотоприемников инфракрасного излучения относится к области интегральной микроэлектроники и предназначено для систем обработки оптической информации.

За ближайшее к заявляемому техническому решению принято известное устройство считывания с временной задержкой и накоплением (ВЗН) сигналов с многоэлементных фотоприемников инфракрасного излучения [патент РФ №2498456 на изобретение], выполненное на полупроводниковой подложке, содержащее многоканальную систему считывания в составе m каналов считывания, при этом каждый из m каналов считывания выполнен из блока считывания с n ячейками считывания. Устройство содержит шину сброса, шину опорного напряжения компаратора, шину сигнала интегрирования, шину тактирующего сигнала блока каскадов ВЗН сигналов с n каскадами ВЗН.

В приведенном ближайшем аналоге к недостаткам можно отнести, что накопительные ячейки схем считывания фотосигнала (БИС считывания или мультиплексоров) с линейной передаточной характеристикой не в состоянии обеспечить детальную передачу высококонтрастного изображения (регистрации изменений освещенности на 4-5 порядков в пределах наблюдаемой сцены).

Задачей заявляемого изобретения является обеспечение возможности управления передаточной характеристикой устройства считывания с временной задержкой и накоплением сигналов в цифровом виде с многоэлементных фотоприемников инфракрасного излучения и, как следствие, обеспечение управления динамическим диапазоном в широких пределах.

Решение задачи обеспечивается тем, что устройство считывания с временной задержкой и накоплением (фиг. 1) сигналов содержит m каналов считывания, каждый из m каналов считывания в своем составе имеет n ячеек считывания (CELL), шину сброса (RINT), шину опорного напряжения компаратора (VREF), шину сигнала интегрирования (INT), шину тактирующего сигнала ВЗН ячеек (CLK), блок n каскадов ВЗН ячеек (CTR), соединенных, так что выход каждой следующей ВЗН ячейки соединен с одним из входов последующей, один из входов каждой ВЗН ячейки соединен с шиной сигнала интегрирования, один из входов каждой ВЗН ячейки соединен с шиной тактирующего импульса CLK, каждая n-я ячейка считывания из состава блока считывания по выходу соединена с одним из входов соответствующей n-й ВЗН ячейки, выход с n-й ВЗН-ячейки используется для вывода информации с канала, каждая ячейка считывания выполнена в составе интегратора фототока (INT), компаратора (СОМР), триггера-защелки (RS-trig); интегратор фототока, компаратор, триггер-защелка последовательно соединены в указанной последовательности относительно одного из входов каждого, один из входов интегратора фототока предназначен для соединения с фотоприемником, второй вход соединен с шиной сброса (RINT), один из входов компаратора соединен с шиной опорного напряжения компаратора (VREF), шина опорного напряжения VREF соединена с источником постоянного напряжения, выход компаратора соединен с входом S триггера-защелки, второй вход R соединен с шиной сброса, выход с которого является выходом с ячейки считывания (OUT_CELL).

Также решение задачи обеспечивается тем, что ВЗН ячейка состоит из k-разрядного счетчика-сумматора, где k - число разрядов аналогово-цифрового преобразователя, имеет два режима работы счетный и сдвиговый, когда сигнал INT равен логической 1, ВЗН ячейка работает в счетном режиме, считая фронты тактирующего импульса CLK, имеющего форму меандра, когда INT равен логическому 0 сдвиговом режиме, т.е. как сдвиговый регистр, сигнал с выхода из ячейки считывания OUT_CELL является разрешающим для счета.

Также решение задачи обеспечивается тем, что изменяя частоту тактирующего импульса ВЗН каскада CLK, можно менять форму передаточной характеристики.

Техническое решение относится к области интегральной микроэлектроники и может быть использовано в системах обработки оптической информации.

Техническим результатом является:

- расширение динамического диапазона по сравнению с прототипом, достигается за счет использования нелинейной передаточной характеристики, в то время как прототип имеет только линейную передаточную характеристику;

- возможность изменения передаточной характеристики с помощью тактирующего импульса CLK и, как следствие, возможность управления динамическим диапазоном в широких приделах;

- уменьшение габаритов схемы ВЗН регистра, за счет использования архитектуры конвейерного типа, представляющей собой цифровой аналог приборов с зарядовой связью.

Сущность технического решения поясняется нижеследующим описанием и прилагаемыми фигурами.

На фиг. 1 представлена схема m канального устройства считывания с ВЗН, где CELL - ячейка считывания, состоящая из INT - интегратора фототока, СОМР - компаратора, RS-trig - триггера защелки; CTR - ВЗН ячейки; SRG - регистра задержки; CLK_OD - шины тактирующего сигнала ВЗН ячеек; CLK - шина тактирующего импульса; INT - шина разрешения интегрирования; RINT - шина сброса; VREF - шина опорного напряжения компаратора.

На фиг. 2 приведена принципиальная схема одной из возможных реализаций ячейки считывания, работающей в области малых токов, где ОР - операционный усилитель; С1 - емкость интегрирования; IN - контакт к фоточувствительному элементу; VPD - шина смещения; S1, S2 - аналоговые ключи; RINT - шина сброса; С2 - емкость ДКВ; R2 - шина управления ДКВ; RS-trig - триггер защелка; RDI - шина опроса ячеек; Z-BUF - буфер с «z» состоянием; OUT_CELL - выход с ячейки считывания; GND - шина земли.

Интегратор фототока выполнен в составе трансимпедансного усилителя с переменной емкостью интегрирования в цепи обратной связи, ключа сброса емкости интегрирования, обкладки емкости интегрирования соединены между отрицательным входом и выходом усилителя, ключ сброса подключен между обкладками емкости интегрирования и управляется шиной сброса, шина опорного напряжения подключена к положительному входу усилителя.

На фиг. 3 приведена временная диаграмма работы ячейки считывания, где RINT - напряжение на шине сброса; VREF - уровень опорного напряжения компаратора; VINT - напряжение на емкости интегрирования; OUT_CELL - напряжение на выходе с ячейки считывания.

На фиг. 4 поясняется принцип ВЗН суммирования в цифровом виде, импульсы из ячеек поступают в ВЗН счетчик-регистр, выполняющий функции счета, суммирования и сдвига цифровых кодов. Импульсы из ячеек являются разрешающими сигналами для счетных ячеек, тактируемых внешним сигналом. При увеличении длительности разрешающего импульса увеличивается число тактирующих импульсов, «посчитанных» счетной ячейкой. После завершения процесса счета коды последовательно сдвигаются вправо, таким образом код, «посчитанный» первой счетной ячейкой, попадает во вторую и т.д. Вторая счетная ячейка начинает счет со значения, которое было сформировано первой счетной ячейкой в предыдущий период, по окончании периода процесс повторяется. Так двоичный код на выходе счетчиков увеличивается (суммируется) при движении цифровых данных от первого до десятого счетчика.

На фиг. 5 приведены осциллограммы этих сигналов при использовании в качестве источников сигнала матрицы КРТ фотодиодов, засвеченной пространственно-модулированным ИК излучением. Из цифрового сигнала выводится только старший бит с установкой высокого логического уровня в момент превышения аналогового сигнала половины динамического диапазона ЦАП.

На фиг. 6 приведен график зависимости цифрового кода от фототока, кривые 1, 2, 3, приведенные на графике, соответствуют различным значениям частоты тактирующего импульса CLK_OD и соответствующие максимальному коду значения фототока I1, I2, I3, Count(IPh) - число тактов импульса CLK_OD, k - количество разрядов АЦП преобразования.

Динамический диапазон оценивается по формуле:

D=20lg(Imaxn),

где Imax - максимальный фототок с фотодиода, σn - СКО шумового тока.

Разрешение АЦП можно выразить как

Тогда минимальный период тактирующего импульса ΔTmin

Из чего следует что, изменяя частоту тактирования АЦП, можно изменять разрешение АЦП. Таким образом, предлагаемая схема позволяет создавать управляемую зависимость выходного сигнала от фототока в виде линейных участков с различными наклонами и таким образом управлять динамическим диапазоном, малый шаг на начальном участке, для малых фототоков, и большой шаг на дальнейшем участке.

Описания примера исполнения содержится в статье Journal of Communications Technology and Electronics, 2019, Vol. 64, No. 3, pp. 304-309

1. Устройство считывания с временной задержкой и накоплением сигналов в цифровом виде с многоэлементных фотоприемников инфракрасного излучения, включающее m каналов считывания, каждый из m каналов считывания в своем составе имеет n ячеек считывания, шину сброса, шину опорного напряжения компаратора, шину сигнала интегрирования, шину тактирующего сигнала ВЗН ячеек, отличающееся тем, что содержит блок из n ВЗН ячеек, соединенных так, что выход каждой следующей ВЗН ячейки соединен с соответствующим входом последующей, один из входов каждой ВЗН ячейки соединен с шиной сигнала интегрирования, один из входов каждой ВЗН ячейки соединен с шиной тактирующего импульса, каждая ячейка считывания по выходу соединена с одним из входов соответствующей ВЗН ячейки, выход n-й ВЗН ячейки используется для вывода информации с канала; каждая ячейка считывания выполнена в составе интегратора фототока, компаратора, триггера-защелки; интегратор фототока, компаратор, триггер-защелка последовательно соединены в указанной последовательности, один из входов интегратора фототока предназначен для соединения с фотоприемником, второй вход соединен с шиной сброса, один из входов компаратора соединен с шиной опорного напряжения компаратора, выход компаратора соединен с входом S триггера-защелки, второй вход R соединен с шиной сброса, выход с триггера-защелки является выходом с ячейки считывания.

2. Устройство по п. 1, отличающееся тем, что ВЗН ячейка состоит из k-разрядного счетчика-сумматора, где k - число разрядов аналогово-цифрового преобразователя, имеет два режима работы: счетный и сдвиговый, когда сигнал интегрирования равен логической 1, ВЗН ячейка работает в счетном режиме, считая фронты тактирующего импульса, имеющего форму меандра, когда сигнал интегрирования равен логическому 0 - в сдвиговом режиме, т.е. как сдвиговый регистр, тогда сигнал с выхода из ячейки считывания является разрешающим для счета.



 

Похожие патенты:

Использование: для детектирования света. Сущность изобретения заключается в том, что устройства включают в себя реакционную структуру для размещения реакционного раствора и по меньшей мере один реакционный центр, генерирующий световые излучения под действием падающего света возбуждения после обработки реакционным раствором, также включают в себя множество светочувствительных элементов и схему устройства.

Изобретение относится к оптоэлектронике, нано- и микроэлектронике и может быть использовано для создания мозаичных фотоприемников (МФП) сверхвысокой размерности, в том числе мультиспектральных.

Настоящее изобретение относится к области оптического обнаружения и, в частности, обнаружения световых пятен, отражаемых или излучаемых объектами, с целью позиционирования объектов в трехмерном пространстве.

Изобретение относится к устройству формирования изображений, системе формирования изображений и подвижному объекту. Техническим результатом является повышение качества захватываемого изображения.

Использование: для формирования изображения. Сущность изобретения заключается в том, что устройство формирования изображения включает в себя первую интегральную схему, на которой множество первых блоков размещается в виде матрицы, и вторую интегральную схему, которая включает в себя схему сканирования первого блока и схему сканирования второго блока.

Использование: для быстрого включения силового транзистора. Сущность изобретения заключается в том, что способ быстрого включения силового транзистора с изолированным затвором включает заземление затвора и подачу на исток или эмиттер открывающего импульса тока наносекундной длительности.

Изобретение относится к двухспектральным фотоприемным устройствам, предназначенным для детектирования излучений в ближнем УФ спектральном диапазоне и среднем ИК спектральном диапазоне.

Многоэлементный фотоприемник с тонкой фоточувствительной базой, включающий матрицу фоточувствительных элементов из одного из полупроводниковых материалов CdxHg1-xTe, InSb, InGaAs, QWIP, соединенную со схемой считывания индиевыми микроконтактами, с антиотражающим покрытием, обеспечивающим минимальное отражение в спектральном диапазоне чувствительности фотодиодов, отличающийся тем, что антиотражающее покрытие создают с уменьшенными механическими напряжениями последовательным вакуумным напылением кремния методом электронно-лучевого испарения со скоростью осаждения 0,08 нм/с и слоя фторида иттрия методом резистивного испарения со скоростью осаждения 0,7 нм/с.

Изобретение может быть использовано в оптических системах, которые обычно используются во многих устройствах, таких как фотоаппараты, телескопы, бинокли, офисное оборудование и научная аппаратура.

Изобретение может быть использовано в оптических системах, которые обычно используются во многих устройствах, таких как фотоаппараты, телескопы, бинокли, офисное оборудование и научная аппаратура.
Наверх