Состав и способ приготовления катализатора - ловушки кремния

Изобретение относится к катализатору - ловушке кремния в составе защитного слоя, используемому в процессах гидроочистки углеводородного сырья после сульфидирования состава непосредственно в реакторе, включающему гидрирующие металлы - оксиды никеля и молибдена, и в качестве носителя оксид алюминия, при этом катализатор имеет следующий состав, % мас.: NiO 0,2-0,5, МоО3 1,0-1,5, носитель Al2O3 - остальное, а в качестве носителя используют переосажденный гидроксид алюминия псевдобемитной структуры, обработанный смесью низкомолекулярных органических кислот и полимерного органического модификатора, причем в качестве низкомолекулярных органических кислот используют смесь винной и щавелевой кислоты при общем содержании 1,0-3,0% мас. и в качестве полимерного органического модификатора используют крахмал в количестве 1-3% мас. Изобретение также относится к способу приготовления катализатора - ловушки кремния. Технический результат заключается в повышении сорбционной емкости катализатора по кремнию, механической прочности на раскалывание и улучшении текстурных характеристик катализатора. 2 н. и 1 з.п. ф-лы, 1 табл., 3 пр.

 

Изобретение относится к каталитической химии, в частности к составам и способам приготовления катализаторов защитного слоя для гидроочистки нефтяных фракций, содержащих кремний, в нефтеперерабатывающей промышленности.

Одним из основных ядов для катализаторов, используемых в нефтеперерабатывающих и нефтехимических процессах, является кремний. Наличие кремния в исходном вторичном сырье связано с использованием его изначально в процессах коксования, висбрекинга и добычи нефти. Полидиметилсилоксан (PDMS) добавляется в сырье переработки в качестве ингибитора образования газа, пены и эмульсий в реакторах.

При температурах выше 300°С происходит разложение PDMS с образованием широкого спектра соединений с максимальным содержанием в смеси циклических силоксанов, следов линейных и реакционноспособных с ОН-группами на концах цепи полисилоксанов.

Разнообразие соединений кремния и продуктов их разложения может оказывать различное воздействие на каталитические свойства катализаторов разного химического состава. Циклические силоксаны, образующиеся при разложении PDMS, являются основными соединениями кремния в нефтепродуктах и составляют около 95% от общего количества соединений кремния. Около 5% от общего количества кремния составляют наиболее реакционно активные линейные соединения кремния гидрокси-, метокси-, гидропероксиполисилоксанов в отношении катализаторов защитного слоя. В бензинах замедленного коксования и каталитического крекинга содержание кремния присутствует в следовых количествах 6-15 ppm, достаточных для дезактивации гидрогенизационных катализаторов.

Известен способ каталитической гидроочистки углеводородного сырья, содержащего кремний, включающий стадии контактирования углеводородного сырья в присутствии водорода с использованием первого катализатора гидроочистки (представляющего защитный слой катализатора при защите углеводородного сырья от кремния - ловушку для кремния), расположенного в двух последовательно связанных реакторах, при температуре, достигающей на выходе 410°С, для уменьшения содержания соединений кремния в углеводородном сырье; охлаждения обработанного таким образом сырья до температуры в интервале от 280°С до 350°С; и контактирования охлажденного углеводородного сырья, выходящего из вышерасположенных по потоку реакторов для удаления соединений кремния, с использованием второго катализатора гидроочистки (основного катализатора), при условиях, эффективных для уменьшения концентрации соединений серы и соединений азота.

(RU 2459858, 27.08.2012; US 7713408 В2, 11.05.2010).

Недостатком данного способа является невысокая емкость по кремнию катализатора защитного слоя, что приводит к необходимости использования отдельного реактора со свежим катализатором защитного слоя.

В изобретении [SU 1297899, 23.03.87] описан способ приготовления катализатора защитного слоя в виде полых цилиндров для гидроочистки нефтяного сырья. Технология включает получение носителя в виде цилиндров и введении активных компонентов -оксида молибдена, оксида никеля или кобальта. Введение активных компонентов осуществляют пропиткой готового носителя водным раствором парамолибдата аммония, нитрата никеля или кобальта в присутствии стабилизатора - винной кислоты, взятой в количестве 1-4% мас. Получение катализатора включает осаждение, пептизацию, формовку гидроксида алюминия, сушку, прокаливание и пропитывание полученного носителя указанными растворами парамолибдата аммония, нитрата никеля или кобальта, причем в пептизированный гидроксид алюминия вводят дополнительно 4-6% мас. водного раствора аммиака и 4-8% мас. триэтиленгликоля, подсушивают до 60-65%-ной влажности и формуют полые цилиндры указанных размеров.

Недостатком указанного катализатора является достаточно сложный способ его приготовления, низкая прочность и отсутствие данных по удалению кремния.

Известен способ приготовления катализатора защитного слоя в процессе гидроочистки нефтяных фракций. Способ состоит в смешении порошков оксида алюминия, природных алюмосиликатных материалов, отработанных никельмолибденсодержащих катализаторов, введении водных растворов соединений молибдена и никеля, введении гидросиликазоля в количестве 2-12% мас., введении в качестве выгорающей добавки муки древесной или муки пищевой, а также активатора формования, формования, сушки и прокаливания.

(RU 2563252, 20.09.2015).

Недостатком способа является отсутствие сведений по удалению кремния катализатором защитного слоя в процессе гидроочистки нефтяных фракций.

Известен катализатор защитного слоя, имеющий повышенную емкость по диоксиду кремния, и располагаемый перед основным катализатором гидроочистки углеводородного сырья. Катализатор, содержит биметаллическое комплексное соединение [Ni(H2O)2]2[Mo4O11 1(C6H5O7)2] с концентрацией 5,3-7,9 мас. %; носитель γ-Al2O3 - остальное (RU 2653494, 10.05.2018).

Недостатком катализатора является сложный процесс его приготовления, необходимое подтверждение образования активного биметаллического комплексного соединения методом ИК-спектроскопии, синтез носителя с использованием аммиака.

Наиболее близким к предлагаемому техническому решению является изобретение, описанное в патенте US №8106250 В2 31.01.2012.

В оптимальный состав катализатора входят двойной пластинчатый гидроксид, в частности, гидротальцит в количестве 90% мас., гидрирующие оксиды металлов - 1% NiO и 5% МоО3 и остальное гидроксид алюминия.

Описан также способ приготовления адсорбента-катализатора на основе пористого носителя, содержащего двойной пластинчатый гидроксид, в частности, гидротальцит общей формулы [Mg0,75 Al0,25 (ОН)2] 0,125(СО3) 0,5 H2O, где мольное отношение магния к алюминию равно 3. Для синтеза носителя авторы используют смесь пластинчатого двойного гидроксида гидроталькита с небольшим количеством порошкообразного гидратированного оксида алюминия в количестве 10% мас., смесь перемешивают в течение 10-30 минут с добавлением воды до образования формуемой массы. Готовую массу формуют через экструдер для получения экструдатов желаемого размера и геометрии. Затем сушка при температуре от 100 до 160°С в течение от 1 до 16 часов, затем прокаливают от 350 до 700°С в течение 1-16 часов. Затем готовят аммиачный или кислый пропиточный раствор, который включает соли парамолибдата аммония и никеля в мольном соотношении молибдена к никелю от 2 до 5 и распыляют на экструдаты, чтобы получить однородное распределение. После пропитки гранулы катализатора провяливают от 1 до 10 часов, сушат при температуре от 100 до 160°С в течение 16 часов, прокаливают от 250 до 700°С от 1 до 16 часов на воздухе. После прокалки катализатор-адсорбент содержит 1% NiO и 5%МоО3.

Перед реакцией адсорбент-катализатор сульфидируют прямогонным бензином с добавлением диметилдисульфида. После сульфидирования проводят активацию адсорбента-катализатора в токе азота, углекислого газа и воды для восстановления гидротальцитовой фазы. Для испытаний в качестве сырья использовали модельный углеводород н-гептан с содержанием кремния 1200 ppm и серы 1000 ppm в виде диметилдисульфида для предотвращения десульфирования катализатора. Образец испытывали при давлении 2 МПа, температуре 265°С, объемной скорости подачи сырья 3 ч-1, расходе водорода 300 нл/л. Из результатов, представленных в патенте, при эксплуатации в течение 8 часов адсорбента-катализатора содержание кремния на катализаторе составило 2,57% мас. при переработке сырья с содержанием кремния 1200 ppm.

Недостатком данного способа является сложный процесс приготовления адсорбента-катализатора и активации перед реакцией гидротальцитовой фазы, сложность сохранения постоянного химического состава, высокая температура прокаливания носителя и катализатора, не высокая адсорбционная емкость по кремнию. Результаты приведены только для модельного сырья, что не дает представления об эффективности катализатора в условиях переработки реальных нефтяных фракций.

Задачей предлагаемого изобретения является разработка состава и способа приготовления катализатора - ловушки кремния, обладающего повышенной сорбционной емкостью по кремнию, для использования в составе защитного слоя при гидроочистке нефтяных фракций, что приведет к увеличению межрегенерационного периода катализатора основного слоя процесса гидроочистки.

Для решения поставленной задачи предлагается катализатор - ловушка кремния в составе защитного слоя, используемый в процессах гидроочистки углеводородного сырья после сульфидирования состава непосредственно в реакторе, состоящего из гидрирующих металлов - оксидов никеля и молибдена, и носителя оксида алюминия, который отличается тем, что имеет следующий состав, % мас.:

NiO 0,2-0,5
МоО3 1,0-1,5
носитель Al2O3 остальное,

а в качестве носителя используют переосажденный гидроксид алюминия псевдобемитной структуры, обработанный смесью низкомолекулярных органических кислот и полимерного органического модификатора, причем в качестве низкомолекулярных органических кислот используют смесь винной и щавелевой кислоты, при общем содержании 1,0-3,0% мас. и в качестве полимерного органического модификатора используют крахмал в количестве 1-3% мас.

Обработка (пептизация) неорганическими и органическими кислотами гидроксидов алюминия играет важную роль в формировании структурных характеристик носителя перед стадией термообработки. Пептизация улучшает пластичность катализаторной массы, и как следствие, способствует повышению механической прочности готового катализатора. При взаимодействии псевдобемита с органическими кислотами происходит образование основных солей алюминия, состав которых определяется степенью замещения гидроксильных групп на анионы кислоты. При прокалке основные органические соли алюминия разлагаются в реакциях дегидратации и декарбоксилирования с образованием газов СО, СО2 и воды, что благоприятно отражается на формировании пористой структуры. При температурах 520-550°С происходит полное разложение органических солей на поверхности и происходит образование поровой структуры фазы γ-Al2O3.

Введение небольших количеств гидрирующих металлов препятствует отложению кокса на катализаторе - ловушке кремния и позволяет сохранить максимально активную поверхность носителя для взаимодействия кремнийсодержащих соединений с активными центрами поверхности катализатора.

Катализатор до сульфидирования имеет удельную поверхность 300-320 м2/г, общий объем пор 0,55-0,62 см3/г, средний диаметр пор 5,2-5,8 нм, сформован экструзией в форме гранул и прокален при температуре не выше 500°С.

Заявлен также способ приготовления катализатора - ловушки кремния, включающий синтез носителя посредством обработки переосажденного гидроксида алюминия псевдобемитной структуры смесью низкомолекулярных органических кислот и полимерного органического модификатора, причем в качестве низкомолекулярных органических кислот используют смесь винной и щавелевой кислоты, при общем содержании 1,0-3,0% мас. и в качестве полимерного органического модификатора используют крахмал в количестве 1-3% мас., последующую пропитку подготовленного носителя совместным водным раствором гидрирующих металлов никеля и молибдена, сушкой и прокалкой готового катализатора. Способ отличается тем, что гидрирующие металлы в виде водного раствора вносят на предварительно прокаленный носитель, при этом сначала готовят водный раствор парамолибдата аммония, затем добавляют ортофосфорную кислоту и перекись водорода, и после тщательного перемешивания вносят соль азотнокислого никеля, после чего совместным раствором солей пропитывают прокаленный носитель, провяливают, сушат и прокаливают при температуре не выше 500°С и перед использованием в процессе катализатор сульфидируют в реакторе установки.

Предлагаемая обработка носителя позволяет оптимизировать текстурные характеристики с учетом процессов термообработки и последующего введения активных компонентов, обеспечить повышение удельной поверхности и, следовательно, количества активных центров катализатора, необходимых для адсорбционно-каталитического удаления кремния из сырья гидроочистки.

Изобретение представлено следующими примерами.

В примерах использовали переосажденный алюминатно-нитратным способом гидроксид алюминия (лепешка), имеющий следующие текстурные характеристики: удельная поверхность 356 м2 /г, объем пор 0,43 см3/г, диаметр пор 3,9 нм.

Пример 1

В смеситель загружают переосажденную лепешку гидроксида алюминия псевдобемитной структуры в количестве 100 г на абсолютно сухое вещество и смесь органических кислот винной и щавелевой в количестве 1 г, тщательно перемешивают массу в течение 30 минут. Затем в массу вводят структурообразующий и пластифицирующий органический модификатор крахмал в количестве 3 г. Массу носителя тщательно перемешивают в течение 30 минут. При необходимости массу упаривают до влажности 45-50% мас. для успешного формования на экструдере с размером фильеры 2 мм. Формованный носитель провяливают при комнатной температуре на воздухе в течение 10-12 часов, сушат при температуре 120-130°С в течение 4-6 часов, прокаливают при температуре 530-550°С в течение 4-6 часов.

Готовый прокаленный носитель в количестве 100 г пропитывают совместным раствором гидрирующих компонентов никеля и молибдена, объем которого больше в 1,2 раза в сравнении с объемом по влагоемкости (0,62 мл/г).

Для этого в 74 мл дистиллированной воды, нагретой до 50-70°С, растворяют при непрерывном перемешивании 1,23 г парамолибдата аммония, в полученный раствор добавляют 0,4 г ортофосфорной кислоты и 0,2 г перекиси водорода. После тщательного перемешивания вносят соль азотнокислого никеля в количестве 0,78 г до достижения прозрачного раствора. Раствор охлаждают до комнатной температуры и пропитывают подготовленный носитель. Продолжительность пропитки при комнатной температуре составляет 1,0 ч. Готовый катализатор - ловушку кремния провяливают на воздухе при комнатной температуре 12 ч, затем сушат при температуре 120°С в течение 6 ч, прокаливают при температуре 500°С в течение 4-6 ч.

Катализатор содержит, % мас: NiO - 0,2, MoO3 - 1,0, остальное - Al2O3.

Пример 2

В смеситель загружают переосажденную лепешку гидроксида алюминия псевдобемитной структуры в количестве 91,8 г на абсолютно сухое вещество и смесь органических кислот винной и щавелевой в количестве 3 г, тщательно перемешивают массу в течение 30 минут. Затем в массу вводят структурообразующий и пластифицирующий органический модификатор крахмал в количестве 3 г. Массу носителя тщательно перемешивают в течение 30 минут. При необходимости массу упаривают до влажности 45-50%) мас. для успешного формования на экструдере с размером фильеры 2 мм. Формованный носитель провяливают при комнатной температуре на воздухе в течение 10-12 часов, сушат при температуре 120-130°С в течение 4-6 часов, прокаливают при температуре 530-550°С в течение 4-6 часов.

Готовый прокаленный носитель в количестве 50 г пропитывают совместным раствором гидрирующих компонентов никеля и молибдена, объем которого больше в 1,2 раза в сравнении с объемом по влагоемкости (0,58 мл/г).

Для этого в 70 мл дистиллированной воды, нагретой до 50-70°С, растворяют при непрерывном перемешивании 1,84 г парамолибдата аммония, в полученный раствор добавляют 0,6 г ортофосфорной кислоты и 0,3 г перекиси водорода. После тщательного перемешивания вносят соль азотнокислого никеля в количестве 1,95 г до получения прозрачного раствора. Раствор охлаждают до комнатной температуры и пропитывают подготовленный носитель. Продолжительность пропитки при комнатной температуре составляет 1,0 ч. Готовый катализатор - ловушку кремния провяливают на воздухе при комнатной температуре 12 ч., затем сушат при температуре 120°С в течение 6 ч, прокаливают при температуре 500°С в течение 4-6 ч.

Катализатор содержит, % мас: NiO - 0,5, Mo - 1,5, остальное - Al2O3.

Катализаторы по примерам 1-2 были испытаны в стационарном слое в реакторе лабораторной проточной установки. Катализатор (фракция 0,5-1,0 мм) загружали в количестве 10 см3. Проводили сульфидирование катализатора по стандартной методике в две стадии: низкотемпературная и высокотемпературная. Для сульфидирования использовали прямогонный бензин с добавлением осерняющего агента - диметилдисульфида (ДМДС) - в количестве, обеспечивающем дополнительное содержание серы в сырье 1,0% мас. В качестве реального сырья была использована смесь бензинов прямой перегонки и коксования в объемном соотношении 70/30%. Из-за низкого содержания кремния в исходном бензине коксования (6,8 ppm) в смесевое сырье было дополнительно введено кремнийсодержащее соединение гексаметилциклотрисилоксан (ГМЦТС) на уровне содержания кремния 1200 ppm для создания более жестких условий для тестирования образцов по примерам 1-2.

Каталитические испытания образцов по примерам 1-2 проводили при давлении 4,0 МПа, соотношении водород/сырье 250 нм33, объемной скорости подачи сырья (ОСПС) 15 час-1, температуре 320°С в течение 8 часов без учета времени подготовки образцов.

Катализатор по примеру 2 был также испытан в процессе гидроочистки смесевого дизельного топлива, содержащего прямогонную дизельную фракцию (70% об.) и легкий газойль замедленного коксования (30% об.). Испытания проводили в стационарном слое в реакторе лабораторной проточной установки. Катализатор (фракция 0,5-1,0 мм) загружали в количестве 10 см3. Проводили сульфидирование катализатора по стандартной методике в две стадии: низкотемпературная и высокотемпературная. Для сульфидирования использовали прямогонную дизельную фракцию с добавлением осерняющего агента - диметилдисульфида (ДМДС) в количестве, обеспечивающем дополнительное содержание серы в сырье 1,0% мас.

Из-за низкого содержания кремния в смесевое сырье (содержание кремния в легком газойле замедленного коксования 2 ppm) было дополнительно введено кремнийсодержащее соединение гексаметилциклотрисилоксан (ГМЦТС) на уровне содержания кремния 1200 ppm для создания более жестких условий для тестирования образца по примеру 2.

Каталитические испытания образца по примеру 2 в процессе гидроочистки смесевого дизельного топлива с вовлечением легкого газойля замедленного коксования проводили при давлении 5,0 МПа, соотношении водород/сырье 350 нм33, объемной скорости подачи сырья (ОСПС) 15 час-1, температуре 350°С в течение 8 часов без учета времени подготовки образцов.

В таблице представлены составы и результаты испытаний образцов катализатора -ловушки кремния по примерам 1-2, а также сравнение с прототипом (пример 3).

Как следует из примеров 1, 2 таблицы, модифицирование исходного гидроксида алюминия смесью карбоновых органических кислот в качестве пептизирующего агента и введение структурообразующего органического полимера крахмала, улучшает текстурные характеристики и механическую прочность катализатора и, как следствие, повышается каталитическая активность образцов предлагаемого катализатора, выраженная в увеличении количества адсорбированного кремния и росте сорбционной емкости по кремнию.

Технический результат: разработан состав и способ приготовления катализатора -ловушки кремния для использования в составе защитного слоя для удаления соединений кремния при гидроочистке нефтяных фракций, позволяющий повысить сорбционную емкость катализатора по кремнию, механическую прочность на раскалывание и улучшить текстурные характеристики катализатора и, следовательно, увеличить межрегенерационный период катализатора основного слоя процесса гидроочистки.

1. Катализатор - ловушка кремния в составе защитного слоя, используемый в процессах гидроочистки углеводородного сырья после сульфидирования состава непосредственно в реакторе, включающий гидрирующие металлы - оксиды никеля и молибдена, и в качестве носителя оксид алюминия, отличающийся тем, что катализатор имеет следующий состав, % мас.:

NiO 0,2-0,5
МоО3 1,0-1,5
носитель Al2O3 остальное,

а в качестве носителя используют переосажденный гидроксид алюминия псевдобемитной структуры, обработанный смесью низкомолекулярных органических кислот и полимерного органического модификатора, причем в качестве низкомолекулярных органических кислот используют смесь винной и щавелевой кислоты при общем содержании 1,0-3,0% мас. и в качестве полимерного органического модификатора используют крахмал в количестве 1-3% мас.

2. Катализатор по п. 1, отличающийся тем, что состав до сульфидирования имеет удельную поверхность 300-320 м2/г, общий объем пор 0,55-0,62 см3/г, средний диаметр пор 5,2-5,8 нм, сформован экструзией в форме гранул и прокален при температуре не выше 500°С.

3. Способ приготовления катализатора - ловушки кремния по п. 1, включающий синтез носителя посредством обработки переосажденного гидроксида алюминия псевдобемитной структуры смесью низкомолекулярных органических кислот и полимерного органического модификатора, причем в качестве низкомолекулярных органических кислот используют смесь винной и щавелевой кислоты при общем содержании 1,0-3,0% мас. и в качестве полимерного органического модификатора используют крахмал в количестве 1-3% мас., последующую пропитку подготовленного носителя совместным водным раствором гидрирующих металлов никеля и молибдена, сушкой и прокалкой готового катализатора, отличающийся тем, что гидрирующие металлы в виде водного раствора вносят на предварительно прокаленный носитель, при этом сначала готовят водный раствор парамолибдата аммония, затем добавляют ортофосфорную кислоту и перекись водорода и после тщательного перемешивания вносят соль азотнокислого никеля, после чего совместным раствором солей пропитывают прокаленный носитель, провяливают, сушат и прокаливают при температуре не выше 500°С и перед использованием в процессе катализатор сульфидируют в реакторе установки.



 

Похожие патенты:

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки нефтяных фракций, включающий в свой состав никель, молибден, вольфрам и носитель, отличающийся тем, что NiO, MoO3 и WO3 наносят на прокаленный носитель из совместного раствора, содержащего смешанные гетерополисоединения H4[SiMonW12-nO40] (n=1-6), карбонат никеля NiCO3×H2O и органическую добавку, с последующей активацией катализатора смесью диметилдисульфида и керосиновой фракции при 240°C в течение 10 ч и при 340°C в течение 10 ч.

Настоящее изобретение относится к способу десульфирования бензиновой фракции, содержащей сернистые соединения, олефины и диолефины, включающему по меньшей мере следующие этапы: a) фракционирование бензина, чтобы извлечь легкую бензиновую фракцию LCN и первую тяжелую бензиновую фракцию HCN; b) осуществление первого этапа десульфирования первой тяжелой бензиновой фракции HCN; c) частичная конденсация первого десульфированного потока, выходящего с этапа b), чтобы получить газовую фазу, состоящую в основном из водорода и H2S, и жидкую углеводородную фазу HCN, содержащую растворенный H2S; d) разделение жидкой углеводородной фазы HCN на промежуточную бензиновую фракцию MCN и вторую тяжелую бензиновую фракцию HHCN; e) осуществление второго этапа десульфирования второй тяжелой бензиновой фракции HHCN.
Изобретение касается способа гидроочистки сырья каталитического крекинга в присутствии гетерогенного катализатора, в котором используемый катализатор содержит, мас.%: [Ni(Н2О)2]2[Mo4O11(С6Н5О7)2] - 1,7-6,6, Ni2[H2P2Mo5O23] - 22,6-30,1 и H4[Mo4(C6H5O7)2O11] - 3,1-6,6, носитель - остальное, при этом носитель содержит, мас.%: в пересчете на оксиды неметаллов SiO2 - 0,1-20,0 и B2O3 - 0-10, натрий не более 0,03, γ- и χ-Al2O3 - остальное.
Изобретение относится к области катализа. Описан способ приготовления носителя катализатора гидроочистки углеводородного сырья, содержащего оксид алюминия и соединение кремния или соединения кремния и бора, в котором продукт быстрой термической обработки гидраргиллита измельчают до частиц со средним объёмным диаметром агломератов частиц 5-25 мкм, затем гидратируют, отмывают от натрия, подвергают гидротермальной обработке в виде суспензии в водном растворе азотной кислоты и источника кремния или в водном растворе азотной кислоты и источника кремния и борной кислоты, распылительной сушке, проводят пептизацию порошка при перемешивании водным раствором аммиака с аммиачным модулем не менее 0,075; экструдируют и после термообработки получают носитель, содержащий, мас.%: кремний и бор в пересчете на оксиды неметаллов SiO2 – 0,1-20 и B2O3 – 0-10, натрий – 0,005-0,03, низкотемпературные переходные формы оксида алюминия Al2O3 – остальное, при этом соотношение низкотемпературных переходных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60).
Изобретение описывает способ получения реактивных и компонентов дизельных топлив путем гидрогенизационной переработки сырья, состоящего из смеси дистиллята растительного происхождения с дистиллятом нефтяного происхождения при соотношении 5,0-40,0:95,0-60,0% масс.
Предложен способ использования катализатора гидродеметаллизации в процессе гидрогенизационной переработки нефтяного сырья, содержащего металлы, при повышенных температуре и давлении в присутствии пакета катализаторов в сульфидной форме, где пакет катализаторов состоит из 50-85% об.

Изобретение относится к катализатору переработки тяжелого углеводородного сырья, состоящему из активного компонента и носителя, при этом активный компонент состоит как минимум из одного гетерополисоединения, выбранного из ряда: [P2Mo5O23]6-, [РМо12О40]3-, [SiMo12O40]4-, [PW12O40]3-, [SiW12O40]4-, [PVnMo12-nO40](3+n)-, где n=1-4, [Co2Mo10O38H4]6-, [Co(OH)6Mo6O18]3-, [Ni(OH)6Mo6O18]2-, [Ni2Mo10O38H4]6-, [Co(OH)6W6O18]3-, [PMonW12-nO40]3-, где n=1-11, Mo12O30(OH)10H2[Co(H2O)3]4 или их смеси, и как минимум одного из соединений ряда: гидроксид кобальта Со(ОН)2·nH2O, n=0-5, гидроксид никеля Ni(ОН)2·nH2O, n=0-5, кобальт углекислый CoCO3, никель углекислый NiCO3, кобальт углекислый основной CoCO3·1,5Со(ОН)2·nH2O, n=0,5-5,0, никель углекислый основной NiCO3·nNi(OH)2·mH2O, n=1-3, m=0,5-5,0, ацетат кобальта Со(СН3СОО)2, ацетат никеля Ni(CH3COO)2 или их смеси, и органической добавки, такой как лимонная кислота, гликоль, ЭДТА или их смеси; при этом носитель представляет собой оксид алюминия, оксид кремния, оксид магния, цеолит, алюмосиликат, пористый алюмофосфат, пористый силикоалюмофосфат или их смесь, обладающий регулярной пространственной структурой макропор, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, с удельной поверхностью не менее 20 м2/г и удельным объемом пор не менее 0,1 см3/г; при этом содержание в прокаленном при 550°C катализаторе кобальта – не более 20 мас.%, никеля – не более 20 мас.%, молибдена – не более 20 мас.%, вольфрама – не более 20 мас.%, содержание органической добавки составляет 5-15 мас.% от веса катализатора.

Изобретение относится к области гетерогенного катализа, а именно к области производства современных катализаторов процессов гидропереработки серосодержащего сырья на основе гетерополисоединений структуры Оллмана-Воу, нанесенных на оксид алюминия с бимодальным типом распределения пор.
Изобретение относится к способам получения малосернистых дизельных топлив. Изобретение касается способа гидроочистки смесевых и прямогонных дизельных фракций с высоким содержанием серы при повышенном давлении и нагревании в поток водородсодержащего газа в присутствии гетерогенного катализатора, содержащего, мас.%: [Со(Н2О)2(С6Н5О7)]2[Mo4O11(С6Н5О7)2] - 11.42-18.9, Co2[H2P2Mo5O23] - 12,1-22,6 и (NH4)4[Mo4(C6H5O7)2O11] - 3,25-4,73, носитель - остальное, при этом носитель содержит, мас.%: в пересчете на оксиды неметаллов SiO2 - 0,1-20 и B2O3 - 0-10; натрий - не более 0,03; γ- и χ-Al2O3 - остальное, причем соотношение низкотемпературных форм оксида χ-Al2O3 и γ-Al2O3 алюминия в носителе в мас.% составляет (0-40):(100-60).

Изобретение относится к способам использования катализатора - ловушки кремния в процессе гидрогенизационной переработки нефтяного сырья, содержащего соединения кремния, и может быть использовано в нефтеперерабатывающей промышленности.

Данное изобретение относится к способу получения катализатора и к способу обработки сточных вод промышленного способа получения пропиленоксида в присутствии катализатора, который получен указанным способом.
Наверх