Подшипники вала турбокомпрессора

Изобретение относится к области машиностроения, а именно к турбокомпрессорам, применяемым, например, для наддува двигателей внутреннего сгорания, в частности, к подшипниковым узлам, выполненным в виде подшипников скольжения. Изобретение позволяет увеличить ресурс подшипников вала турбокомпрессора за счет повышения износостойкости рабочих сопрягаемых поверхностей подшипников скольжения жидкостного трения путем применения трибологических пар из керамических композиционных материалов с низким коэффициентом трения (не более 0,1). Подшипники вала турбокомпрессора состоят из двух раздельных плавающих вращающихся подшипников скольжения жидкостного трения и дистанционного элемента между ними, подшипники выполнены в виде втулок с маслоперегонными сквозными отверстиями и маслопроточными пазами на торцевых поверхностях, с наружными и внутренними цилиндрическими гладкими поверхностями, в которых с зазором и соосно помещен вал ротора турбокомпрессора. Подшипники скольжения и дистанционный элемент между ними изготовлены из реакционно-спеченного карбида кремния (SiC) с твердостью поверхности 88-90 HRC, а на поверхность вала ротора турбокомпрессора нанесено покрытие на основе модифицированного карбонитрида титана (TiCN) c твердостью поверхности 82-84 HRC. 1 ил., 1 табл.

 

Изобретение относится к области машиностроения, а именно к турбокомпрессорам, применяемым, например, для наддува двигателей внутреннего сгорания, и в частности, к подшипниковым узлам, выполненным в виде подшипников скольжения.

Известен подшипниковый узел турбокомпрессора, содержащий корпус, с установленным в нем с зазором подшипником, выполненным в виде моновтулки, цилиндрический стопор, удерживающий подшипник от проворачивания и осевого перемещения, снабженный осевым каналом для подвода смазки к подшипнику, в моновтулке подшипника выполнена поперечная прорезь, образующая плоские поверхности, в которые упирается цилиндрический стопор, выполненный с плоским вильчатым выступом, создающим плоские рабочие поверхности сопряжения (Патент РФ на полезную модель №31619 от 20.08.2003 г.).

Недостатком подшипникового узла турбокомпрессора такой конструкции является небольшой срок его устойчивой работоспособности из-за высокого уровня вибрации и быстрого изнашивания по этой причине сопрягаемых поверхностей.

Известно устройство подшипникового узла турбокомпрессора, состоящего из корпуса, в рабочей полости которого с радиальным зазором и соосно, но с ограничением от проворачивания и осевого перемещения установлен плавающий не вращающийся подшипник, выполненный в виде моновтулки, в который, в свою очередь, с зазором и соосно помещен вал ротора турбокомпрессора, установленный в двух раздельных плавающих вращающихся подшипниках скольжения жидкостного трения, связанных между собой дистанционным элементом, и выполненных в виде втулок с гладкими внутренними и наружными цилиндрическими поверхностями, сообщающимися между собой сквозными отверстиями, а торцевые поверхности снабжены маслопроточными пазами (Патент РФ на полезную модель №56503 от 10.09.2006 г.).

Но и в этой конструкции процессы изнашивания сопрягаемых поверхностей в подшипниковом узле турбокомпрессора по причине большой скорости вращения и повышенной температуры значительно снижают ресурс работы турбокомпрессора («Автомобильные двигатели с турбонаддувом», Н.С. Ханин, Э.В. Аболтин и др. - М. Машиностроение, 1991 г., стр. 336).

Наиболее близким к заявляемому техническому решению является подшипниковый узел турбокомпрессора, содержащий корпус, два раздельных плавающих вращающихся подшипника скольжения жидкостного трения и дистанционный элемент между ними, выполненные в виде втулок с маслоперегонными сквозными отверстиями и маслопроточными пазами на торцевых поверхностях, с наружными и внутренними цилиндрическими гладкими поверхностями, в которых с зазором и соосно помещен вал ротора турбокомпрессора, при этом вал ротора турбокомпрессора и два раздельных плавающих вращающихся подшипника скольжения жидкостного трения с дистанционным элементом между ними установлены непосредственно в рабочую полость корпуса подшипникового узла. На гладкой внутренней цилиндрической поверхности полости корпуса подшипникового узла выполнены не менее двух симметричных сегментных канавок, соединенных с центральными магистральными каналами для протока смазки. Плавающие вращающиеся подшипники скольжения жидкостного трения выполнены из более прочного и твердого материала, чем бронза, например, из стали, с последующей термической обработкой, твердостью HRC 60-64 (Патент РФ на полезную модель №120146 от 10.09.2012 г.).

Недостатком данного изобретения является изготовление основных деталей пар трения (вал-подшипник) из стали (коэффициент трения при этом не менее 0,3), что не позволяет достичь высоких показателей ресурса турбокомпрессора из-за недостаточной износостойкости подшипников.

Задачей предлагаемого изобретения является увеличение ресурса подшипников вала турбокомпрессора за счет повышения износостойкости рабочих сопрягаемых поверхностей подшипников скольжения жидкостного трения, путем применения трибологических пар из керамических композиционных материалов с низким коэффициентом трения (не более 0,1).

Указанная задача решается следующим образом.

Подшипники вала турбокомпрессора состоят из двух раздельных плавающих вращающихся подшипников скольжения жидкостного трения и дистанционного элемента между ними, выполненных в виде втулок с маслоперегонными сквозными отверстиями и маслопроточными пазами на торцевых поверхностях, с наружными и внутренними цилиндрическими гладкими поверхностями, в которых с зазором и соосно помещен вал ротора турбокомпрессора. Подшипники скольжения и дистанционный элемент между ними изготовлены из реакционно-спеченного карбида кремния (SiC) с твердостью поверхности 88-90 HRC, а на поверхность вала ротора турбокомпрессора нанесено покрытие на основе карбонитрида титана (TiCN)c твердостью поверхности 82-84 HRC.

Такая конструкция подшипников вала турбокомпрессора, а именно, когда подшипники скольжения выполнены из более твердого материала, чем термически обработанная сталь с твердостью 60-64 HRC, позволит повысить износостойкость сопрягаемых поверхностей, тем более что на поверхность вала турбокомпрессора, сопрягаемого с подшипниками, нанесено покрытие из композиционного материала, при этом сочетание трибологических пар трения из реакционно-спеченного карбида кремния (SiC) и карбонитрида титана (TiCN), по результатам испытаний показало низкий коэффициент трения, который является интегральным параметром, влияющим на износостойкость подшипников вала турбокомпрессора.

Предлагаемое техническое решение поясняется чертежом подшипников вала турбокомпрессора (фиг. 1).

На фиг. 1 приведен продольный разрез подшипников вала турбокомпрессора, где обозначены:

1 - подшипник скольжения;

2 - гладкая внутренняя цилиндрическая поверхность подшипника скольжения;

3 - гладкая наружная цилиндрическая поверхность подшипника скольжения;

4 - сквозное маслоперегонное отверстие подшипника скольжения;

5 - цилиндрическая гладкая поверхность вала ротора;

6 - колесо турбины;

7 - маслопроточные пазы;

8 - дистанционный элемент;

9 - гладкая внутренняя цилиндрическая поверхность дистанционного элемента;

10 - гладкая наружная цилиндрическая поверхность дистанционного элемента;

11 - сквозное маслоперегонное отверстие дистанционного элемента;

12 - вал ротора;

13 - колесо компрессора;

14 - резьбовое соединение;

15 - рабочая полость корпуса подшипникового узла;

16 - корпус подшипникового узла;

17 - гладкая внутренняя цилиндрическая поверхность рабочей полости корпуса подшипникового узла;

18 - сегментная канавка;

19 - магистральный канал.

Подшипники вала турбокомпрессора состоят из двух подшипников скольжения 1, выполненных из реакционно-спеченного карбида кремния (SiC) с твердостью поверхности 88-90 HRC в виде втулок с гладкими внутренними 2 и наружными 3 цилиндрическими поверхностями подшипников скольжения и сквозными маслоперегонными отверстиями подшипника скольжения 4, равномерно расположенными по окружности и предназначенными для подачи смазочного материала на цилиндрическую гладкую поверхность вала ротора 5, при этом сам вал ротора 12 выполнен за одно с колесом турбины 6. На каждой из торцевых поверхностей подшипника скольжения 1 выполнены маслопроточные пазы 7. Между подшипниками скольжения 1 с зазором и соосно установлен дистанционный элемент 8 в виде втулки, изготовленной из реакционно-спеченного карбида кремния (SiC), с гладкой внутренней 9 и наружной 10 цилиндрическими поверхностями дистанционного элемента со сквозными маслоперегонными отверстиями дистанционного элемента 11. Вал ротора 12, выполненный как одно целое с колесом турбины 6 с одной стороны и с установленным на другом конце вала ротора колесом компрессора 13, закрепленным резьбовым соединением 14. Вал ротора 12 турбокомпрессора, изготовленный из стали 38ХМ с покрытием на основе карбонитрида титана (TiCN) с твердостью поверхности 82-84 HRC, с выполненными в виде втулок подшипниками скольжения 1 и дистанционным элементом 8, установлены в рабочей полости корпуса подшипникового узла 15, а сам корпус подшипникового узла 16 выполнен с гладкой внутренней цилиндрической поверхностью рабочей полости корпуса подшипникового узла 17.

На гладкой внутренней цилиндрической поверхности рабочей полости корпуса подшипникового узла 17 выполнены две симметричные сегментные канавки 18, соединенные с центральными магистральными каналами 19 для протока смазки.

Перед запуском двигателя (на фиг. 1 не показан) включают маслозакачивающий насос (на фиг. 1 не показан), с помощью которого из системы смазки, через магистральные каналы 19 и сегментные канавки 18, все зазоры подшипникового узла турбокомпрессора под давлением заполняются смазочным материалом. Маслозакачивающий насос работает до тех пор, пока в системе смазки давление не стабилизируется до трех атмосфер. После этого запускают двигатель (на фиг. 1 не показан), а маслозакачивающий насос отключают, и далее подшипники вала турбокомпрессора снабжаются смазочным материалом от системы смазки двигателя.

С момента пуска двигателя энергия потока выхлопных газов, направленная на лопатки колеса турбины 6, преобразуется в механическую энергию и мгновенно приводит к вращению на больших скоростях (60000-140000 об/мин) колесо турбины 6, выполненного с валом ротора 12 как одно целое. В связи с несоосностью геометрических осей вала ротора 12 и рабочей полости корпуса подшипникового узла 15, перед запуском двигателя и неуравновешенности ротора в целом, от неравенства масс на колесах турбины 6 и компрессора 13, при каждом запуске двигателя в течение времени с момента пуска двигателя до момента установления режима полного жидкостного трения вал ротора 12 в рабочей полости корпуса подшипникового узла 15 совершает прецессионное движение динамического характера с нутационными колебаниями высокой частоты, приводящими всю систему к вибрациям высокого уровня и к быстрой потере заданных предельных точностей параметров по геометрическим формам и размерам сопрягаемых рабочих поверхностей.

С момента начала вращения вала ротора 12 на сверхвысоких скоростях, под действием гидродинамических сил и процесса жидкостного трения, раздельные подшипники скольжения 1 с дистанционным элементом 8 между ними начинают вращаться, постепенно выравнивая толщину масляного слоя, заключенного между гладкими наружными цилиндрическими поверхностями подшипника скольжения 3 и гладкой внутренней цилиндрической поверхностью рабочей полости корпуса подшипникового узла 17, по всей ее окружности. При этом вал ротора 12 постепенно «всплывает» и его геометрическая ось располагается соосно с геометрической осью рабочей полости корпуса подшипникового узла 15 корпуса подшипникового узла 16. После того, как пространства между всеми рабочими сопрягаемыми поверхностями заполнятся масляными слоями равномерной толщины по всей окружности, осуществится соосность геометрических осей вала ротора 12 и рабочей полости корпуса подшипникового узла 15 корпуса подшипникового узла 16 с максимальной точностью, подшипники вала турбокомпрессора переходят в режим полного жидкостного трения. С этого момента прекращаются вибрации с высокой амплитудой, приводящие к быстрой потере предельно заданной точности по геометрическим формам и размерам сопрягаемых рабочих поверхностей, и в условиях полного жидкостного трения износ сопрягаемых рабочих поверхностей практически не происходит.

Подшипники скольжения жидкостного трения, выполненные из реакционно-спеченного карбида кремния (SiC), работающие в паре с валом ротора с нанесенным на его поверхность покрытием на основе карбонитрида титана (TiCN) с высокими значениями твердости, значительно превосходящими твердость закаленных сталей, повышают износостойкость трибологической пары, что, в конечном счете, приводит к значительному увеличению срока эксплуатации подшипников вала турбокомпрессора. Данные выводы подтверждены результатами сравнительных испытаний прототипа и предлагаемого техническим решением изобретения (таблица 1). Коэффициент трения снижен в 3 раза, что позволит повысить износостойкость рабочих сопрягаемых поверхностей подшипников скольжения и прогнозировать увеличение ресурса подшипников вала турбокомпрессора подшипниковой пары в 2-3 раза.

Ниже приведены примеры результатов испытаний трибологических пар трения из реакционно-спеченного карбида кремния (SiC) и карбонитрида титана (TiCN) с различной твердостью поверхностей, по результатам которых получен низкий коэффициент трения, влияющий на износостойкость подшипников вала турбокомпрессора.

Пример 1.

Одним из известных способов повышения износостойкости сопрягаемых поверхностей подшипников вала турбокомпрессора является применение дистанционного элемента между двух раздельных плавающих вращающихся подшипников скольжения жидкостного трения, образующих пару трения с валом ротора.

Подшипники скольжения и дистанционный элемент выполнены в виде втулок с маслоперегонными сквозными отверстиями и маслопроточными пазами на торцевых поверхностях, с наружными и внутренними цилиндрическими гладкими поверхностями, в которых с зазором и соосно помещен вал ротора турбокомпрессора. Подшипники скольжения и дистанционный элемент между ними изготовлены из реакционно-спеченного карбида кремния (SiC) с твердостью поверхности 88 HRC, а на поверхность вала ротора турбокомпрессора нанесено покрытие на основе карбонитрида титана (TiCN) с твердостью поверхности 82 HRC. Коэффициент трения получен равным 0,095.

Пример 2.

Испытаны элементы турбокомпрессора аналогично примеру 1 с тем отличием, что полученная твердость поверхностей пар трения для подшипников скольжения и дистанционного элемента, изготовленных из реакционно-спеченного карбида кремния (SiC) составит 90 HRC, а на поверхность вала ротора турбокомпрессора будет нанесено покрытие на основе карбонитрида титана (TiCN) с твердостью поверхности 84 HRC. Коэффициент трения получен равным 0,1.

Сравнительные данные испытаний прототипа и примеров предлагаемого изобретения приведены в таблице 1.

Подшипники вала турбокомпрессора, состоящие из двух раздельных плавающих вращающихся подшипников скольжения жидкостного трения и дистанционного элемента между ними, выполненные в виде втулок с маслоперегонными сквозными отверстиями и маслопроточными пазами на торцевых поверхностях, с наружными и внутренними цилиндрическими гладкими поверхностями, в которых с зазором и соосно помещен вал ротора турбокомпрессора, отличающиеся тем, что подшипники скольжения и дистанционный элемент между ними изготовлены из реакционно-спеченного карбида кремния (SiC) с твердостью поверхности 88-90 HRC, а на поверхность вала ротора турбокомпрессора нанесено покрытие на основе карбонитрида титана (TiCN) с твердостью поверхности 82-84 HRC.



 

Похожие патенты:

Изобретение относится к деталям машин, в частности к способам изготовления и конструкциям подшипников, и может быть использовано при изготовлении подшипников скольжения на машиностроительных заводах.

Настоящее изобретение относится к механической системе (1), содержащей подшипник (4) и вал (10), соединенный с подшипником (4), которой оборудован двигатель внутреннего сгорания, при этом указанная механическая система (1) подвержена действию среднего контактного давления со значением менее 200 МПа, отличающаяся тем, что вал (10) содержит по меньшей мере одну зону (12), обеспеченную: противозадирным поверхностным покрытием (20), имеющим поверхностную твердость, которая по меньшей мере в два раза больше поверхностной твердости подшипника (4), и микротекстурированием (30), которое образовано множеством отдельных микрополостей (31, 32, 33, 34, 35), распределенных в пределах указанной зоны (12).

Изобретение относится к области машиностроения и ремонта машин, может быть использовано как при изготовлении новых деталей, так и при восстановлении изношенных деталей, в частности подшипников скольжения.

Изобретение относится к области машиностроения и ремонта машин, может быть использовано как при изготовлении новых деталей, так и при восстановлении изношенных деталей, в частности подшипников скольжения.

Изобретение относится к различным областям машиностроения (тяжелое, транспортное, авиационно-космическое, автотракторное, энергетическое и т.д.) и может быть использовано для создания рабочих поверхностей элементов тяжелонагруженных узлов трения (например, подшипников качения и скольжения, кулачковых механизмов и т.д.).
Изобретение относится к области машиностроения, конкретно к подшипникам качения, используемым в опорах осей машин и механизмов для увеличения продолжительности их срока службы.

Изобретение относится к антифрикционным полимерным самосмазывающимся материалам, которые могут использоваться для изготовления вкладышей и втулок подшипников скольжения, сепараторов подшипников качения и других элементов узлов трения, работающих без смазки и предназначенных для применения в машиностроении, приборостроении, авиа- и судостроении и других областях техники.

Изобретение относится к области машиностроения, а именно к производству втулок рычажной тормозной системы рельсового пассажирского или грузового транспорта, в том числе вагонов метрополитена, эксплуатирующихся без использования смазки.

Изобретение относится к области машиностроения, а именно к производству втулок рычажной тормозной системы рельсового пассажирского или грузового транспорта, в том числе вагонов метрополитена, эксплуатирующихся без использования смазки.

Изобретение относится к области машиностроения, а именно к производству втулок рычажной тормозной системы рельсового пассажирского или грузового транспорта, в том числе вагонов метрополитена, эксплуатирующихся без использования смазки.

Изобретение относится к области машиностроения и может быть использовано в опорах валов различных машин, в частности в деревообрабатывающих станках и оборудовании, станках текстильной промышленности и др.
Наверх