Способ выделения оксида меди (i) cu2o из многокомпонентных сульфатных растворов тяжелых цветных металлов

Изобретение относится к гидрометаллургии меди и может быть использовано при переработке растворов, получаемых при выщелачивании медных руд, концентратов и других промышленных отходов, содержащих медь. Выделение Cu2O из многокомпонентного сульфатного раствора тяжелых цветных металлов осуществляют путем обработки с получением CuSO4 и дальнейшим осаждением меди в виде соли CuCl. Последующим воздействием на него ранее полученным порошком меди и получением оксида меди (I). В исходный многокомпонентный сульфатный раствор вносят дихлорид кальция в виде раствора или твердого продукта в количестве, необходимом для достижения в растворе ионного соотношения концентраций Cu+2:Cl- = 1:2, с получением в осадке гипса (CaSO4), который затем отделяют. К оставшемуся раствору добавляют медный порошок в количестве, равном количеству Cu+2 в растворе, при этом восстанавливают медь (II) до меди (I) и выделяют осадок хлорида меди (I), который промывают водой и повторно обрабатывают дихлоридом кальция с получением раствора хлорокомплекса меди (I) CuCl2-. В полученный хлорокомплекс меди (I) при нагревании 80°С вносят гашеную известь Ca(OH)2. После чего путем его гидролитического разложения получают оксид меди (I) Cu2O. Затем осадок оксида меди Cu2O отделяют от раствора и промывают водой, а фильтрат - раствор CaCl2 возвращают в процесс. Способ позволяет повысить степень селективности выделения оксида меди из многокомпонентных сульфатных растворов цветных металлов. 1 табл., 5 пр.

 

Изобретение относится к гидрометаллургии меди и может быть использовано при переработке растворов, получаемых при выщелачивании медных руд, концентратов и других промышленных отходов, содержащих медь.

В настоящее время в гидрометаллургии меди переработку природных (руды) или техногенных продуктов (штейны, файнштейны) осуществляют путем их окислительного выщелачивания с получением растворов соответствующих сульфатов. В частности, при выщелачивании медно-никелевых файнштейнов получают сульфатные растворы, содержащие Cu+2, Ni+2, Co+2, Fe+3. Их переработка включает выделение меди в виде чистого раствора CuSO4 за счет жидкостной экстракции с последующим переделом на катодную медь электролизом с нерастворимым анодом. В настоящее время в гидрометаллургии меди переработку природных (руды) или техногенных продуктов (штейны, файнштейны) осуществляют путем их окислительного выщелачивания с получением растворов соответствующих сульфатов. В частности, при выщелачивании медно-никелевых файнштейнов получают сульфатные растворы, содержащие Cu+2, Ni+2, Co+2, Fe+3. Их переработка включает выделение меди в виде чистого раствора CuSO4 за счет жидкостной экстракции с последующим переделом на катодную медь электролизом с нерастворимым анодом.

Известен «Способ восстановления меди из сульфидных соединений, включающий обработку сульфидного медного материала натриевой щелочью, отличающийся тем, что сульфидный медный материал смешивают с дисперсным металлическим алюминием и обрабатывают водным раствором щелочи в режиме перколяции, при этом содержание щелочи в водном растворе составляет 20-40 г/л, а расход щелочного раствора устанавливают на уровне, обеспечивающем содержание сернистого натрия в продуктивном растворе 40-50 г/л. Патент РФ на изобретение №2710810 МПК: C22B 15/00, д.публ. 14.01.2020 Известен «Способ выделения меди в виде хлорида меди из минерального сырья, включающий хлорирование исходного сырья и отгонку и сублимацию хлорида меди, отличающийся тем, что сублимацию ведут при температуре выше 365°С в токе инертного газа с переходом хлорида меди в газовую фазу в виде хлорида меди (I).

Патент РФ на изобретение №2458163 МПК: C22B 15/00, д. публ. 10.08.2012.

Известен «Способ получения хлорида меди (I) CuCl из сульфатно-хлористого раствора путем его обработки окисью углерода при атмосферном давлении и температуре 20-60°С, причем в качестве исходного используют раствор при соотношении в нем иона хлора к иону двухвалентной меди, равном 1,10÷1,15, отличающийся тем, что обработку исходного раствора проводят технологическими газами, а именно водяным газом, содержащим моноксид углерода СО, при интенсивном перемешивании в течение трех часов, с добавлением в исходный раствор хлорида меди (I) в виде CuCl или в форме хлорокомплекса меди (I) -CuCl2- при соотношении ионов меди Cu(I):Cu(II), равном 0,1÷0,5%. Патент РФ на изобретение №2567609 МПК: C01G 03/05, д. публ. 27.08.2015.

Известно «Селективное выделение меди при гидрокарбонилировании сульфатно-хлоридных растворов цветных металлов» статья Федосеев И.В., Максимов В.В. «Цветные металлы» 2005 г. №8, стр. 22-25.

Способ заключается в сочетании процесса гидрокарбонилирования, приводящего к удалению из раствора ~95% меди, с операцией доводки путем обработки раствора порошком меди, что позволяет технологически полностью удалить медь из растворов, содержащих Fe, Ni, Co и другие тяжелые цветные металлы.

Наиболее близким к предложенному способу разделения этих металлов является «Способ переработки многокомпонентных хлоридных и хлоридно-сульфатных растворов с получением чистого электролита CuSO4 и его регенерацией после электролиза с нерастворимым анодом, включающий осаждение меди из раствора в виде чистой соли CuCl воздействием на него ранее полученным порошком меди с последующим гидролитическим разложением CuCl водяным паром при температуре, равной 100°С, с получением оксида меди (I) - Cu2O, при воздействии которого на раствор серной кислоты получают чистый электролит CuSO4 и порошок меди, при этом образующийся в процессе порошок меди используют для выделения CuCl из исходного раствора.

Патент РФ на изобретение №2628946 МПК: C25B 1/26, д. публ. 23.08.2017.

Техническим результатом изобретения является повышение степени селективности выделения оксида меди из многокомпонентных сульфатных растворов цветных металлов.

Достижение указанного результата обеспечивается за счет того, что «Способ выделения оксида меди (I) - Cu2O из многокомпонентных сульфатных растворов тяжелых цветных металлов осуществляют путем обработки с получением CuSO4 и дальнейшим осаждением меди в виде соли CuCl. Последующим воздействием на него ранее полученным порошком меди и получением оксида меди (I) Cu2O. При этом сначала в исходный многокомпонентный сульфатный раствор вносят дихлорид кальция - CaCl2 в виде раствора или твердого продукта в количестве, необходимом для достижения в растворе ионного соотношения концентраций Cu+2: Cl-=1:2, с получением в осадке гипса CaSO4, который затем отделяют. К оставшемуся раствору добавляют медный порошок в количестве, равном количеству Cu+2 в растворе, при этом восстанавливают медь (II) до меди (I) и выделяют осадок хлорида меди (I), который промывают водой и повторно обрабатывают дихлоридом кальция - CaCl2 с получением раствора хлорокомплекса меди (I) CuCl2-. В полученный хлорокомплекс меди (I) при нагревании до 80°С вносят гашеную известь Ca(ОН)2, и путем гидролитического разложения хлорокомплекса меди (I) CuCl2- получают оксид меди (I) Cu2O. Затем осадок оксида меди Cu2O отделяют от раствора и промывают водой, а фильтрат - раствор CaCl2 возвращают снова в процесс. Предлагаемый способ основан на выделении меди из многокомпонентных сульфатных растворов в форме чистой соли - хлорида меди(I) - CuCl и дальнейшей переработки этой соли на Cu2O. Предлагаемый способ осуществляется в результате следующих операций:

1. В исходный многокомпонентный сульфатный раствор вносят дихлорид кальция - CaCl2 в виде раствора или твердого продукта в количестве, необходимом для достижения в растворе ионного соотношения концентраций Cu+2: Cl-=2. Эта операция вызывает выделение в осадок гипса:

Осадок гипса отделяют и направляют на производство строительных материалов.

2. К сульфатно-хлоридному раствору после отделения гипса добавляют медный порошок в количестве, равном количеству Cu+2 в растворе. Это приводит к восстановлению меди (II) до меди (I) и выделению осадка хлорида меди (I):

Осадок CuCl отделяют от раствора и промывают водой.

3. Чистую соль CuCl растворяют действием раствора CaCl2 за счет комплексообразования:

4. В раствор хлорокомплекса меди (I) вносят гашеную известь при нагревании до 80°С, что приводит к гидролитическому разложению CuCl2- и образованию оксида меди (I):

Осадок Cu2O отделяют от раствора и промывают водой, а фильтрат - раствор CaCl2- направляют на операции 1 и 3.

Переработку оксида меди (I) - Cl2O на чистую медь можно осуществить как химическим восстановлением, в частности, обработкой генераторным газом при температуре

так и электрохимическим восстановлением за счет процессов растворения в серной кислоте:

Электролит подвергают электролизу с нерастворимым анодом и получают катодную медь:

Порошок меди используют как оборотный продукт для процесса 2 -осаждения CuCl.

Реакцию (6) используют также для регенерации отработанного при электролизе электролита CuSO4 в соответствии с реакцией (7).

Примеры применения предлагаемого способа

Исходный сульфатный раствор был получен выщелачиванием файнштейна под давлением кислорода. Состав использованного раствора, г/л: Cu-36,24; Ni-32,12; Fe-0,30; Co-0,75.

Пример 1

К 100 мл исходного раствора, содержавшего 0,057 моля Cu+2, прилито 28,5 мл одномолярного раствора CaCl2. Произошло выпадение осадка CaSO4. Осадок отфильтровали. В полученном фильтрате мольное соотношение Cu+2:Cl-=1,0:1,0. в этот раствор внесли 0,057 моля (3,62 г) порошка меди. Эту смесь перемешивали в течение 1 часа при комнатной температуре.

Наблюдалось растворение части порошка меди и образование осадка CuCl.

По окончанию опыта определяли, какое количество меди из суммы Cu+2+Cu0 перешло в CuCl.

Пример 2

Этот опыт проводили аналогично опыту 1, но к исходному раствору добавили 43 мл раствора CaCl2. После отделения осадка CaSO4 в полученном фильтрате мольное соотношение Cu+2:Cl-=1,0:1,5. В этот раствор внесли такое же количество порошка меди, как в примере 1.

Наблюдалось растворение части порошка меди и образование осадка CuCl.

По окончанию опыта определяли, какое количество из суммы Cu+2+Cu0 перешло в CuCl.

Пример 3

Этот опыт проводили аналогично примеру 1, но к исходному раствору добавили 57,0 мл раствора CaCl2. После удаления осадка CaSO4 в полученном фильтрате мольное соотношение Cu+2:Cl-=1,0:2,0. В этот раствор внесли такое же количество порошка меди, как и в примере 1.

Наблюдалось полное растворение порошка меди и выделение осадка CuCl.

По окончанию опыта определяли, какое количество меди из суммы Cu+2+Cu0 перешло в CuCl.

Пример 4

Этот опыт проводили аналогично примеру 1, но к исходному раствору добавили 60,0 мл раствора CaCl2. После удаления осадка CaSO4 в полученном фильтрате мольное соотношение Cu+2:Cl-=1,0:2,1. В этот раствор внесли такое же количество порошка меди, как и в примере 1.

Наблюдалось полное растворение порошка меди и выделение осадка CuCl.

По окончанию опыта определяли, какое количество меди из суммы Cu+2+Cu0 перешло в CuCl.

После отделения осадка CuCl в полученном фильтрате обнаружено наличие меди в форме CuCl2-.

Результаты опытов в примерах 1, 2, 3, 4 представлены в таблице.

Пример 5

В стеклянный стакан поместили 200 мл исходного раствора и прилили 114 мл одномолярного раствора CaCl2. Выпавший осадок CaSO4 отфильтровали. В полученном растворе содержалось 0,114 моля иона Cu+2. В этот раствор внесли 0,114 моля (7,24 г) порошка меди. В полученном растворе мольное соотношение Cu+2:Cl-=1,0:2,0. Полученную смесь перемешивали 1 час при комнатной температуре.

Наблюдалось полное растворение порошка меди и выделение осадка CuCl, который отделяли фильтрованием, промывали на фильтре водой, затем распульповали в дистиллированной воде и снова фильтровали. В полученном фильтрате содержалось 0,1 мг/л меди.

К полученному осадку CuCl прилили одномолярный раствор CaCl2 до полного растворения CuCl. В результате образовывался хлоркомплекс меди (I) - CuCl2-.

Следовательно, применение вышеуказанного способа позволит повысить степень селективности выделения оксида меди из многокомпонентных сульфатных растворов цветных металлов.

Способ выделения оксида меди (I) (Cu2O) из многокомпонентного сульфатного раствора тяжелых цветных металлов, включающий его обработку с получением CuSO4 и дальнейшее осаждение меди в виде соли CuCl последующим воздействием на нее ранее полученным порошком меди с получением оксида меди (I) (Cu2O), отличающийся тем, что сначала в исходный многокомпонентный сульфатный раствор вносят дихлорид кальция (CaCl2) в виде раствора или твердого продукта в количестве, необходимом для достижения в растворе ионного соотношения концентраций Cu+2:Cl-=1:2, с получением в осадке гипса (CaSO4), который отделяют, к оставшемуся раствору добавляют медный порошок в количестве, равном количеству Cu+2 в растворе, при этом восстанавливают медь (II) до меди (I) и выделяют осадок хлорида меди (I), который промывают водой и повторно обрабатывают дихлоридом кальция (CaCl2) с получением раствора хлорокомплекса меди (I) (CuCl2-), в который при нагревании до 80°С вносят гашеную известь (Ca(OH)2), после чего проводят гидролитическое разложение упомянутого хлорокомплекса меди (I) с получением оксида меди (I) (Cu2O), затем осадок оксида меди Cu2O отделяют от раствора и промывают водой, а фильтрат - раствор CaCl2, возвращают в процесс.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к пространственному и временному мониторингу материала, и может быть использовано в промышленности и экспериментальных процессах.
Изобретение относится к переработке эвдиалитового концентрата и может быть использовано для получения чистых соединений циркония, гафния и редкоземельных элементов.

Изобретение относится к способу обработки кремнистых несульфидных руд, указанный способ включает добавление композиции собирателей, которая содержит фосфатное соединение формулы I, в которой R означает линейную или разветвленную, насыщенную или ненасыщенную углеводородную группу, содержащую от 8 до 24 атомов углерода, A означает алкиленоксидное звено, Y означает H, Na, K, аммоний или алкилированный аммоний, n=1-3, p=0-25, X выбран из тех же групп, что и R-Ap или Y, или в которой R означает линейную или разветвленную, насыщенную или ненасыщенную углеводородную группу, содержащую от 1 до 12 атомов углерода, и присутствует по меньшей мере одно звено A, являющееся пропиленоксидным звеном.

Изобретение относится к методам химической технологии, жидкостной экстракции благородных металлов при их промышленном получении. В способе получения благородных металлов из многокомпонентных технологических растворов исходный кислый хлоридный раствор, содержащий благородные металлы и примеси, вводят в водную двухфазную систему, состоящую из полиэтиленгликоля с молекулярной массой от 1500 до 20000 и фазообразующей соли.

Настоящая группа изобретений относится к способу обработки карбонатных несульфидных руд композицией собирателей, которая содержит фосфатное соединение формулы I, в которой R означает линейную или разветвленную, насыщенную или ненасыщенную углеводородную группу.

Изобретение относится к металлургии цветных металлов, в частности к переработке упорных золотосодержащих концентратов методом высокотемпературного автоклавного окисления.Способ переработки сульфидных золотосодержащих концентратов двойной упорности включает кислотную обработку концентрата, сгущение с получением пульпы, подачу пульпы в автоклав, автоклавное окислительное выщелачивание пульпы под давлением кислорода, охлаждение выщелоченной пульпы самоиспарением, ее кондиционирование, обезвоживание и промывку с дальнейшим извлечением золота сорбционным цианированием автоклавного остатка, при этом автоклавное окислительное выщелачивание ведут при температуре 190-240°С и подаче в автоклав 25-100 кг/т азотной кислоты или 30-100 кг/т нитратной соли.

Изобретение относится к области техники извлечения ванадия, в частности к способу извлечения ванадия противоточным кислотным выщелачиванием клинкера, полученного в результате кальцинирующего обжига.

Изобретение относится к гидрометаллургии палладия и может быть использовано при выделении палладия из солянокислых растворов сложного состава при переработке медь и никель содержащих концентратов, а также вторичного сырья, в частности, при переработке отработанных катализаторов автомобильной промышленности, содержащих палладий.

Изобретение может быть использовано при получении материалов для положительных электродов литий-ионных аккумуляторных батарей. Для получения растворов, применяемых в производстве положительных электродов, используют раствор серной кислоты, содержащий никель, кобальт и кальций.

Изобретения относятся к области радиохимической технологии и может быть использованы при обращении с высокоактивным рафинатом Пурекс-процесса переработки отработавшего ядерного топлива (ОЯТ) АЭС.

Изобретение относится к способу переработки мелкодисперсного сырья в печи взвешенной плавки горизонтального или вертикального типа, в частности мелкодисперсных сульфидных рудных концентратов, концентратов техногенных месторождений, содержащих цветные металлы, характеризующихся пониженным содержанием серы.
Наверх