Синтез цеолита aei


B01D53/9418 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2744763:

ДЖОНСОН МЭТТИ ПАБЛИК ЛИМИТЕД КОМПАНИ (GB)

Изобретение относится к способу синтеза цеолита, композиции для обработки выхлопного газа, содержащей кристаллы цеолита, имеющие каркас AEI и необязательно каркас ITE и содержащие медь, к каталитическому изделию для обработки выхлопного газа и к способу обработки выхлопного газа. Способ синтеза цеолита включает изготовление реакционной смеси, содержащей (a) по меньшей мере один источник оксида алюминия, (b) по меньшей мере один источник диоксида кремния, (c) содержащее переходный металл аминное органическое темплатирующее вещество, которое представляет собой Cu-тетраэтиленпентамин (Cu-TEPA), (d) гидроксид щелочного металла и (e) отличное от первого второе органическое темплатирующее вещество, выбранное из группы, состоящей из N,N-диметил-3,5-диметилпиперидиния и 1,1-диэтил-2,6-диметилпиперидиния, в которой каждое из указанного содержащего переходный металл аминного органического темплатирующего вещества и отличного от него второго темплатирующего вещества является подходящим для образования каркасной структуры AEI, причем в данной реакционной смеси практически не содержится фтор, нагревание реакционной смеси под аутогенным давлением, при температуре от 100 до 200°C в течение 1-20 суток для образования кристаллов цеолита, имеющих каркас AEI и необязательно каркас ITE и содержащих медь. Технический результат – обеспечение способа получения цеолита с более равномерным распределением меди. 4 н. и 4 з.п. ф-лы, 1 табл.

 

Область техники, к которой относится изобретение

Настоящее изобретение предлагает содержащие переходные металлы цеолиты, имеющие каркас AEI. Настоящее изобретение также предлагает способ изготовления таких цеолитов и их использование в качестве катализатора.

Уровень техники

Цеолиты представляют собой кристаллические или квазикристаллические алюмосиликаты, структуру которых образуют повторяющиеся тетраэдрические звенья SiO4 и AlO4. Эти звенья соединяются друг с другом, образуя каркасы, включающие регулярные внутрикристаллические полости и каналы, имеющие молекулярные размеры. Были синтезированы синтетические цеолиты множества типов, причем каждый из них имеет уникальный каркас, основу которого составляет определенное расположение его тетраэдрических звеньев. По традиции каждому каркасному типу присваивается его уникальный трехбуквенный код (например, "AEI"), который определяет Международная цеолитная ассоциация (IZA).

Синтетические цеолиты изготавливают, как правило, используя структурообразующее вещество (СОВ), также называемое терминами "темплат" или "темплатирующее вещество". Как правило, СОВ образуют сложные органические молекулы, которыми определяются или регулируются молекулярная форма и рисунок цеолитного каркаса. Как правило, СОВ служит для расположения гидратированного диоксида кремния и оксида алюминия и/или в качестве формы, вокруг которой образуются цеолитные кристаллы. После того, как образуются кристаллы, СОВ удаляют из внутренней структуры кристаллов, и остается алюмосиликатная клетка, имеющая поры молекулярного размера.

Цеолиты находят многочисленные промышленные применения, включая двигатели внутреннего сгорания, газовые турбины, угольные электростанции и т.д. В качестве примера, содержание оксидов азота (NOx) в выхлопных газах можно регулировать, осуществляя так называемое селективного каталитическое восстановление (СКВ); в ходе этого процесса соединения NOx в выхлопных газах вводятся в контакт с восстановителем в присутствии цеолитного катализатора.

Цеолиты ZSM-5 и бета были исследованы в качестве катализаторов СКВ вследствие своей активности в относительно широком температурном интервале. Однако содержащие относительно крупные поры структуры этих цеолитов имеют ряд недостатков. Прежде всего, они проявляют подверженность высокотемпературному гидротермическому разложению, в результате которого они теряют свою активность. Кроме того, поры больших и средних размеров, как правило, адсорбируют углеводороды, которые окисляются по мере того, как увеличивается температура катализатора, и, таким образом, производится значительный экзотермический эффект, который может наносить ущерб катализатору. Эта проблема становится особенно острой в работающих на обедненной топливной смеси системах, таких как автомобильные дизельные двигатели, где углеводороды могут адсорбироваться в значительных количествах в течение пуска из холодного состояния. Коксобразование за счет углеводородов представляет собой еще один значительный недостаток этих катализаторов, представляющих собой молекулярные сита, имеющие относительно крупные и средние поры. С другой стороны, мелкопористые материалы, такие как материалы, имеющие каркасную структуру типа AEI, который определяет Международная цеолитная ассоциация, имеют преимущество, заключающееся в том, что углеводороды способны проникать в каркас в меньших количествах.

Чтобы активировалась каталитическая реакция, в цеолитном материале могут содержаться переходные металлы, в том числе как металл-заместитель в составе каркаса металл (обычно используется термин "цеолит с замещенным металлом") или как введенный после синтеза путем ионного обмена или пропитывания металл (обычно используется термин "цеолит с обменным металлом"). При упоминании в настоящем документе термин "после синтеза" относится к процессу после кристаллизации цеолита. Типичный процесс введения переходного металла в цеолит представляет собой катионный обмен или пропитывание с использованием металлов или предшественников после образования молекулярного сита. Однако эти процессы введения металлов посредством обмена и пропитывания часто приводят к неудовлетворительной однородности распределения металлов, в частности, в том случае, когда обмен осуществляется в мелкопористом молекулярном сите.

Сущность изобретения

Заявители разработали уникальное семейство содержащих переходные металлы цеолитов, которые называются в настоящем документе терминами "цеолит JMZ-2" или "JMZ-2". Этот цеолитный материал содержит каркасы AEI и необязательно каркасы ITE, в том числе в качестве материала, состоящего из смешанных фаз, и/или в качестве продукта срастания кристаллов, а также внекаркасный переходный металл. Предпочтительно переходный металл, такой как медь, присутствует в форме ионных частиц, занимающих полости и каналы цеолитного кристалла. Переходный металл вводится в цеолитный материал, когда образуются цеолитные кристаллы.

Согласно определенным аспектам настоящего изобретения, JMZ-2 можно изготавливать, используя смесь для однореакторного синтеза посредством введения аминного комплекса переходного металла, который служит в качестве первого СОВ и второго, отличного от первого, СОВ. При упоминании в настоящем документе термины "первый" и "второй" по отношению к СОВ используются для объяснения того, что два СОВ представляют собой различные соединения, но эти термины не предполагают и не представляют порядок или последовательность операции или введения компонентов в реакцию синтеза. Сочетание двух СОВ в одной реакционной смеси называется в настоящем документе термином "смешанный темплат", и введение переходного металла в цеолит в течение кристаллизации называется термином "однореакторный синтез". Предпочтительно медные производные JMZ-2 синтезируют, используя Cu-тетраэтиленпентамин (Cu-TEPA) в качестве первого СОВ и N,N-диметил-3,5-диметилпиперидиния или 1,1-диэтил-2,6-диметилпиперидиния в качестве второго СОВ.

Согласно определенному варианту осуществления настоящего изобретения, предлагается каталитическая композиция, содержащая синтетический цеолит, имеющий каркас AEI и необязательно каркас ITE и введенный на месте применения переходный металл, равномерно диспергированный в объеме полостей и каналов цеолита.

Согласно еще одному варианту осуществления настоящего изобретения, предлагается каталитическая композиция, содержащая синтетический цеолит имеющий каркас AEI и необязательно каркас ITE, содержащий приблизительно 0,1 до приблизительно 7 мас.% внекаркасной меди по отношению к суммарной массе цеолита, и содержащий менее чем 5 мас.% CuO по отношению к суммарной массе цеолита.

Согласно следующим вариантам осуществления настоящего изобретения, предлагается способ синтеза цеолита, включающий следующие стадии: (1) изготовление реакционной смеси, содержащей (a) по меньшей мере, один источник оксида алюминия, (b) по меньшей мере, один источник диоксида кремния, (c) содержащее переходный металл аминное органическое темплатирующее вещество, (d) зародышевые кристаллы и (e) отличное от первого второе органическое темплатирующее вещество, причем каждое из первого и второго темплатирующих веществ является подходящим для образования каркасных структур AEI; и (2) нагревание реакционной смеси в условиях кристаллизации в течение достаточного времени для образования кристаллов цеолита, имеющего каркас AEI и содержащего переходный металл. Согласно определенным вариантам осуществления эти стадии осуществляются в такой последовательности, которая описана выше.

Согласно еще одному варианту осуществления настоящего изобретения, предлагается каталитическое изделие для обработки выхлопного газа, содержащего каталитическую композицию, которая описывается в настоящем документе, причем данная каталитическая композиция находится на поверхности и/или в объеме ячеистой монолитной подложки.

Кроме того, согласно еще одному варианту осуществления настоящего изобретения, предлагается способ обработки выхлопного газа, включающий введение в контакт выхлопного газа после сгорания, содержащего NOx и/или NH3, с каталитическим изделием, описанным в настоящем документе, для селективного восстановления, по меньшей мере, части NOx до N2 и H2O и/или окисления, по меньшей мере, части NH3.

Подробное описание

Как правило, цеолиты JMZ-2 изготавливают из смеси для однореакторного синтеза, содержащую источник диоксида кремния, источник оксида алюминия, первое образующее каркас органическое темплатирующее вещество в форме аминного комплекса переходного металла и второе органическое темплатирующее вещество. Аминный комплекс переходного металла используется для введения ионных соединений переходного металла, такого как медь, в каналы и/или полости цеолита в течение кристаллизации. Внекаркасный переходный металл, введенный в цеолит в течение его синтеза, называется в настоящем документе термином "введенный на месте применения металл". Согласно определенным вариантам осуществления, диоксид кремния, оксид алюминия, темплатирующие вещества и зародышевые кристаллы смешиваются, и образуется реакционная смесь, например, гель, который затем нагревается, упрощая кристаллизацию. Содержащие металл цеолитные кристаллы осаждаются из реакционной смеси. Эти кристаллы собираются, промываются и высушиваются.

При упоминании в настоящем документе термин "AEI" означает каркас типа AEI, и термин "ITE" означает каркас типа, которые определяет Комиссия по структурам Международной цеолитной ассоциации (IZA). Новый способ синтеза, который описывается в настоящем документе, позволяет производить цеолитный материал, содержащий приблизительно от 1 до 99 мас.% алюмосиликатов, имеющих каркас AEI, и приблизительно от 99 до 1 мас.% алюмосиликатов, имеющих каркас ITE, при том условии, что цеолитный материал содержит, по меньшей мере, 70 мас.%, предпочтительно, по меньшей мере, приблизительно 80 мас.%, по меньшей мере, приблизительно 90 мас.%, по меньшей мере, приблизительно 95 мас.%, или, по меньшей мере, приблизительно 99 мас.% каркасов AEI и ITE в сочетании по отношению к суммарной массе алюмосиликата в цеолитном материале. Могут также присутствовать и другие вторичные фазы, такие как FAU и/или MOR. Предпочтительно эти вторичные фазы составляют менее чем приблизительно 10 мас.%, предпочтительнее менее чем приблизительно 5 мас.% и еще предпочтительнее менее чем приблизительно 2 мас.% цеолитного материала.

Согласно определенным вариантам осуществления, цеолитный материал составляет, в основном, каркас AEI по отношению к каркасу ITE. Например, цеолит JMZ-2 может содержать алюмосиликаты, имеющие каркас AEI, и алюмосиликаты, имеющие каркас ITE, при соотношении AEI/ITE, которое составляет приблизительно 1,05:1, приблизительно 1,5:1, приблизительно 2:1, приблизительно 3:1, приблизительно 4:1, приблизительно 5:1, приблизительно 10:1, приблизительно 20:1 или приблизительно 100:1.

Согласно другим вариантам осуществления, цеолитный материал содержит в качестве основного каркас ITE по отношению к каркасу AEI. Например, цеолит JMZ-2 может содержать алюмосиликаты, имеющие каркас ITE, и алюмосиликаты, имеющие каркас AEI, при соотношении ITE:AEI, составляющем приблизительно 1,05:1, приблизительно 1,5:1, приблизительно 2:1, приблизительно 3:1, приблизительно 4:1, приблизительно 5:1, приблизительно 10:1, приблизительно 20:1 или приблизительно 100:1.

При упоминании в настоящем документе термин "цеолит" означает синтетическое алюмосиликатное молекулярное сито, имеющее каркас, структуру которого составляют оксид алюминия и диоксид кремния (т.е. повторяющиеся тетраэдрические звенья SiO4 и AlO4), и предпочтительно имеющее молярное соотношение диоксида кремния и оксида алюминия (SAR), которое составляет, по меньшей мере, 10, например, от приблизительно 20 до приблизительно 50.

Цеолиты согласно настоящему изобретению не представляют собой силикоалюмофосфаты (SAPO), и, таким образом, не содержат значительное количество фосфора в своем каркасе. То есть цеолитные каркасы не содержат фосфор в качестве регулярно повторяющегося звена, и/или в них отсутствует такое количество фосфора, которое могло бы воздействовать на основные физические и/или химические свойства материала, в частности, на способность материала селективно восстанавливать NOx в широком температурном интервале. Согласно определенным вариантам осуществления, количество каркасного фосфора составляет менее чем 0,1 мас.%, предпочтительно менее чем 0,01 или менее чем 0,001 мас.% по отношению к суммарной массе цеолита.

В цеолитах, которые упоминаются в настоящем документе, отсутствуют или практически не содержатся каркасные металлы, не представляющие собой алюминий. Таким образом, термин "цеолит" отличается от термина "цеолит с замещенным металлом" (также называется "изоморфный замещенный цеолит"), причем последний имеет каркас, в котором содержатся один или несколько металлов, не представляющих собой алюминий и введенных в цеолитный каркас посредством замещения.

Подходящие источники диоксида кремния представляют собой, без ограничения, пирогенный диоксид кремния, силикаты, осажденный диоксид кремния, коллоидный диоксид кремния, гели диоксида кремния, деалюминированные цеолиты, такие как деалюминированный цеолит Y, и а также гидроксиды и алкоксиды кремния. Источники диоксида кремния, которые обеспечивают высокий относительный выход, являются предпочтительными. Типичные источники оксида алюминия также являются общеизвестными и представляют собой алюминаты, оксид алюминия, другие цеолиты, коллоиды оксида алюминия, бемиты, псевдобемиты, гидроксиды алюминия, соли алюминия, такие как сульфат алюминия и оксихлорид алюминия, гидроксиды и алкоксиды алюминия, гели оксида алюминия.

В качестве первого СОВ используется аминный комплекс переходного металла. Подходящие переходные металлы представляют собой известные металлы, которые используются для активации СКВ соединений NOx в выхлопных газах, причем Cu и Fe являются предпочтительными, и Cu является особенно предпочтительной. Подходящие аминные компоненты для аминного комплекса металла представляют собой органические амины и полиамины, которые способны обеспечивать образование каркаса AEI. Предпочтительный аминный компонент представляет собой тетраэтиленпентамин (TEPA). Аминный комплекс металла (т.е. Cu-TEPA) можно изготавливать предварительно или изготавливать на месте применения и вводить в смесь для синтеза из индивидуальных компонентов, содержащих металл и амин.

Второе темплатирующее каркас вещество, которое не представляет собой вышеупомянутый аминный комплекс меди, выбирается для регулирования синтеза AEI. Примерные подходящие вторые темплатирующие вещества представляют собой катион N,N-диэтил-2,6-диметилпиперидиния; катион N,N-диметил-9-азониябицикло[3.1.1]нонан; катион N,N-диметил-2,6-диметилпиперидиния; катион N-этил-N-метил-2,6-диметилпиперидиния; катион N,N-диэтил-2-этилпиперидиния; катион N,N-диметил-2-(2-гидроксиэтил)пиперидиния; катион N,N-диметил-2-этилпиперидиния; катион N,N-диметил-3,5-диметилпиперидиния; катион N-этил-N-метил-2-этилпиперидиния; катион 2,6-диметил-1-азония[5.4]декан; катион N-этил-N-пропил-2,6-диметилпиперидиния; катион 2,2,4,6,6-пентаметил-2-азониябицикло[3.2.1]октан; и катион N,N-диэтил-2,5-диметил-2,5-дигидропирролия, причем особенно предпочтительными являются катионы N,N-диметил-3,5-диметилпиперидиния и 1,1-диэтил-2,6-диметилпиперидиния. Анион, связанный с катионом, может представлять собой любой анион, который не препятствует образованию цеолита. Примерные анионы представляют собой галогениды, например, фторид, хлорид, бромид и йодид, гидроксид, ацетат, сульфат, тетрафторборат, карбоксилат и т.д. Гидроксид представляет собой наиболее предпочтительный анион. Согласно определенным вариантам осуществления, в реакционной смеси и последующем цеолите отсутствует или практически не содержится фтор.

Однореакторный синтез осуществляется, когда объединяются в заданных относительных количествах источник диоксида кремния, источник оксида алюминия, аминный комплекс переходного металла, второе органическое темплатирующее вещество и необязательно источник гидроксидных ионов, такой как NaOH, и зародышевые кристаллы, такие как цеолит AEI, в разнообразных условиях перемешивания и нагревания, которые должны быть легко понятными для специалистов в данной области техники. JMZ-2 можно изготавливать из реакционной смеси, имеющей состав, который представлен (представлен в форме массовых соотношений) в таблице 1. Реакционная смесь может присутствовать в форме раствора, геля или пасты, причем гель является предпочтительным. Содержания кремния и алюминия в реагентах выражены в пересчете на SiO2 и Al2O3, соответственно.

Таблица 1
Типичные значения Предпочтительные значения
SiO2/Al2O3 10-100 15-65
OH-SiO2 0,5-2 0,7-1,5
Темплат 1/Темплат 2 0,01-0,3 0,05-0,15
Темплаты/SiO2 0,05-0,5 0,10-0,25
Переходный металл/Темплат 1 0,02-5 0,1-2
H2O/SiO2 20-80 30-45

Значения температуры реакции, продолжительности и скорости перемешивания, а также другие технологические параметры, которые являются подходящими для традиционных технологий синтеза AEI, как правило, также оказываются подходящими для настоящего изобретения. Без ограничения, для получения JMZ-2 могут осуществляться следующие стадии синтеза. Источник алюминия (например, деалюминированный цеолит Y) смешивается в воде c гидроксидом натрия, чтобы способствовать растворению оксида алюминия. В смесь добавляется органическое темплатирующее вещество (например, 1,1-диэтил-2,6-диметилпиперидиний), и объединение осуществляется посредством перемешивания или встряхивания в течение нескольких минут (например, приблизительно от 5 до 30 минут). Добавляется источник диоксида кремния (например, TEOS), и перемешивание осуществляется в течение нескольких минут (например, приблизительно от 30 до 120 минут) до тех пор, пока не образуется гомогенная смесь. После этого в смесь добавляются зародышевые кристаллы (например, шабазит), источник меди (например, сульфат меди) и TEPA, и объединение осуществляется посредством перемешивания или встряхивания в течение нескольких минут (например, приблизительно от 15 до 60 минут). Гидротермическая кристаллизация обычно осуществляется в условиях аутогенного давления, при температуре, составляющей приблизительно от 100 до 200°C, в течение периода, составляющего несколько суток, например, приблизительно от 1 до 20 суток, предпочтительно приблизительно от 1 до 3 суток.

После окончания периода кристаллизации полученные в результате твердые частицы отделяют от остаточной реакционной жидкости, используя стандартные технологии механического разделения, такие как вакуумное фильтрование. Отделенные твердые частицы затем промываются деионизированной водой и высушиваются при повышенной температуре, составляющей, например, от 75 до 150°C, в течение нескольких часов (например, приблизительно от 4 до 24 часов). Стадия высушивания может осуществляться в вакууме или при атмосферном давлении.

Высушенные кристаллы JMZ-2 предпочтительно прокаливаются, но могут также использоваться без прокаливания.

Следует понимать, что вышеупомянутая последовательность стадий, а также каждый из вышеупомянутых периодов времени и каждое значение температуры является просто примерным и может изменяться.

Согласно определенным вариантам осуществления, источник щелочного металла, такого как натрий, не добавляется в смесь для синтеза. Выражение "практически не содержащий щелочные металлы" или "не содержащий щелочные металлы" при использовании в настоящем документе означает, что щелочной металл не добавляется в смесь для синтеза в качестве заданного ингредиента. При упоминании в настоящем документе "практически не содержащий щелочные металлы" или "не содержащий щелочные металлы" катализатор означает, как правило, катализатор, материал которого содержит щелочной металл на незначительном уровне по отношению к заданной каталитической активности. Согласно определенным вариантам осуществления, цеолит JMZ-2 содержит менее чем приблизительно 0,1 мас.% и предпочтительно менее чем приблизительно 0,01 мас.% щелочного металла, такого как натрий или калий.

Заявители также обнаружили, что вышеупомянутая процедура однореакторного синтеза допускает регулирование содержания переходного металла в кристаллах на основании состава исходной смеси для синтеза. Например, желательное содержание Cu или Fe можно устанавливать посредством обеспечения заданного относительного количества источника Cu или Fe в смеси для синтеза, без необходимости пропитывания или ионного обмена после синтеза для увеличения или уменьшения содержания меди в материале. Согласно определенным вариантам осуществления, синтезированный цеолит содержит от приблизительно 0,1 до приблизительно 5 мас.%, например, приблизительно 0,5 мас.% до приблизительно 5 мас.%, от приблизительно 1 до приблизительно 3 мас.%, от приблизительно 0,5 до приблизительно 1,5 мас.% и от приблизительно 3,5 мас.% до приблизительно 5 мас.% меди, железа или их сочетания. Например, регулируемое содержание Cu, составляющее, например, от 0,5 до 5 мас.%, от 0,1 до 1,5 мас.% или от 2,5 до 3,5 мас.% может быть достигнуто без дополнительной обработки после синтеза. Согласно определенным вариантам осуществления, в цеолите отсутствует введенный обменом после синтеза металл, включая медь и железо.

Переходный металл является каталитически активным и практически равномерно диспергированным в объеме каркаса AEI и необязательно каркаса ITE. Здесь практически равномерно диспергированный переходный металл означает, что цеолитный материал содержит не более чем приблизительно 5 мас.% переходного металла в форме оксида переходного металла (например, CuO, FeO, Fe2O3, Fe3O4), что также упоминается в настоящем документе как отсутствие оксида переходного металла или растворимого оксида переходного металла по отношению к суммарному количеству соответствующего переходного металла в цеолите JMZ-2. Например, цеолит JMZ-2 содержит не более чем приблизительно 5 мас.%, не более чем приблизительно 3 мас.%, не более чем приблизительно 1 мас.%, и не более чем приблизительно 0,1 мас.%, например, от приблизительно 0,01 до приблизительно 5 мас.%, от приблизительно 0,01 до приблизительно 1 мас.% или от приблизительно 0,01 до 3 мас.% CuO по отношению к суммарной массе меди в цеолитном материале Предпочтительно переходные металлы не вводятся в реакционную смесь в форме оксидов металлов и не присутствуют в синтезированном цеолитном кристалле в форме оксидов металлов. Заявители обнаружили, что сокращение до минимума концентрации CuO улучшает гидротермическую устойчивость и качество обработки выхлопного газа с использованием цеолита JMZ-2.

Предпочтительно цеолит JMZ-2 содержит, в основном, введенный на месте применения переходный металл по сравнению со свободными оксидами переходных металлов. Согласно определенным вариантам осуществления, цеолит JMZ-2 содержит свободные оксиды переходныхксиды ые ми оксидами е по отношению к заданной металлов (например, CuO) и введенный на месте применения переходный металл (например, ионы Cu) в массовом соотношении, составляющем менее чем приблизительно 1, менее чем приблизительно 0,5, менее чем приблизительно 0,1, или менее чем приблизительно 0,01, например, от приблизительно 1 до приблизительно 0,001, от приблизительно 0,5 до приблизительно 0,001, от приблизительно 0,1 до приблизительно 0,001 или от приблизительно 0,01 до приблизительно 0,001.

Предпочтительно в цеолите JMZ-2 не содержатся каркасные переходные металлы в значительном количестве. Вместо этого медь или железо присутствуют в форме ионных соединений во внутреннем объеме каналов и полостей цеолитного каркаса. Соответственно, содержащий металл цеолит JMZ-2 не представляет собой цеолит с замещенным металлом (например, цеолит, содержащий металл, введенный посредством замещения в его каркасную структуру), и он не обязательно должен представлять собой цеолит с обменным металлом (например, цеолит, который подвергается ионному обмену после синтеза). Согласно определенным вариантам осуществления, цеолит JMZ-2 отсутствует или практически не содержит металлы, не представляющие собой медь и алюминия, или в нем практически не содержится металлы, не представляющие собой железо и алюминия. Например, согласно определенным вариантам осуществления, в цеолите JMZ-2 отсутствуют или практически не содержатся никель, цинк, олово, вольфрам, молибден, кобальт, висмут, титан, цирконий, сурьма, марганец, магний, хром, ванадий, ниобий, рутений, родий, палладий, золото, серебро, индий, платина, иридий и/или рений. Согласно определенным вариантам осуществления, в цеолите JMZ-2 отсутствует или практически не содержится железо. Согласно определенным вариантам осуществления, в цеолите JMZ-2 отсутствует или практически не содержится кальций. Согласно определенным вариантам осуществления, в цеолите JMZ-2 отсутствует или практически не содержится церий.

Цеолит JMZ-2 является пригодным для использования в качестве катализатора в определенных применениях. Катализатор JMZ-2 можно использоваться без ионного обмена металлов после синтеза. Однако согласно определенным вариантам осуществления, JMZ-2 может подвергаться обмену металлов после синтеза. Таким образом, согласно определенным вариантам осуществления, предлагается катализатор, содержащий цеолит JMZ-2, содержащий один или несколько каталитических металлов, введенных в процессе обмена в каналы и/или полости цеолита после синтеза цеолита, в дополнение к введенной на месте применения меди или введенному на месте применения железу.

Примерные металлы, которые могут вводиться в цеолит после синтеза посредством ионного обмена или пропитывания, представляют собой переходные металлы, в том числе медь, никель, цинк, железо, вольфрам, молибден, кобальт, титан, цирконий, марганец, хром, ванадий, ниобий, а также олово, висмут, и сурьма; благородные металлы, в том числе металлы платиновой группы (МПГ), такие как рутений, родий, палладий, иридий, платина, и драгоценные металлы, такой как золото и серебро; щелочноземельные металлы, такие как бериллий, магний, кальций, стронций и барий; и редкоземельные металлы, такие как лантан, церий, празеодим, неодим, европий, тербий, эрбий, иттербий и иттрий. Предпочтительные переходные металлы для введения после синтеза посредством ионного обмена, представляют собой основные металлы, и предпочтительные основные металлы представляют собой металлы, выбранные из группы, которую составляют марганец, железо, кобальт, никель и их смеси. Металлы, вводимые после синтеза, могут добавляться в молекулярное сито с использованием любой известной технологии, такой как ионный обмен, пропитывание, изоморфное замещение и т.д. Количество металла, вводимого обменом после синтеза, может составлять от приблизительно 0,1 до приблизительно 3 мас.%, например, от приблизительно 0,1 до приблизительно 1 мас.% по отношению к суммарной массе цеолита.

Согласно определенным вариантам осуществления, содержащий металл цеолит содержит введенный обменом после синтеза щелочноземельные металл, в частности, кальций и/или магний, который находится в объеме каналов и/или полостей цеолитного каркаса. Таким образом, содержащий металл цеолит согласно настоящему изобретению может содержать переходные металлы (ПМ), такие как медь или железо, введенные в цеолитные каналы и/или полости в течение синтеза, а также он содержит один или несколько введенных обменом щелочных и щелочноземельных металлов (ЩМ), таких как кальций или калий, введенных после синтеза. Щелочной или щелочноземельный металл может присутствовать в некотором количестве по отношению к присутствующему переходному металлу. Например, согласно определенным вариантам осуществления, ПМ и ЩМ присутствуют, соответственно, в молярном соотношении, составляющем от приблизительно 15:1 до приблизительно 1:1, например, от приблизительно 10:1 до приблизительно 2:1, от приблизительно 10:1 до приблизительно 3:1 или от приблизительно 6:1 до приблизительно 4:1, в частности, в том случае, когда ПМ представляет собой медь, и ЩМ представляет собой. Согласно определенным вариантам осуществления, определяется относительное совокупное количество переходных металлов (ПМ) и щелочных и/или щелочноземельных металлов (ЩМ), которые присутствуют в цеолитном материале, по отношению к количеству алюминия в цеолите, а именно, каркасного алюминия. При упоминании в настоящем документе соотношение (ПМ++ЩМ):Al вычисляется как соотношение суммарного молярного количества ПМ++ЩМ и молярного количества каркасного Al в соответствующем цеолите. Согласно определенным вариантам осуществления, катализатор материал имеет соотношение (ПМ++ЩМ):Al, составляющее не более чем приблизительно 0,6. Согласно определенным вариантам осуществления, соотношение (ПМ++ЩМ):Al составляет не более чем 0,5, например, от приблизительно 0,05 до приблизительно 0,5, от приблизительно 0,1 до приблизительно 0,4 или от приблизительно 0,1 до приблизительно 0,2.

Согласно определенным вариантам осуществления, Ce вводится в JMZ-2 после синтеза посредством пропитывания, например, посредством добавления нитрата Ce в содержащий медный промотор цеолит с применением традиционной технологии пропитывания по влагоемкости. Предпочтительная концентрация церия в материале катализатора составляет, по меньшей мере, приблизительно 1 мас.%, по отношению к суммарной массе цеолита. Примерные предпочтительные концентрации составляют, по меньшей мере, приблизительно 2,5 мас.%, по меньшей мере, приблизительно 5 мас.%, по меньшей мере, приблизительно 8 мас.%, по меньшей мере, приблизительно 10 мас.%, от приблизительно 1,35 до приблизительно 13,5 мас.%, от приблизительно 2,7 до приблизительно 13,5 мас.%, от приблизительно 2,7 до приблизительно 8,1 мас.%, от приблизительно 2 до приблизительно 4 мас.%, от приблизительно 2 до приблизительно 9,5 мас.% и от приблизительно 5 до приблизительно 9,5 мас.%, по отношению к суммарной массе цеолита. Согласно определенным вариантам осуществления, концентрация церия в материале катализатора составляет от приблизительно 50 г/фут3 (1,75 мг/см3) до приблизительно 550 г/фут3 (19,25 мг/см3). Другие интервалы концентрации Ce представляют собой следующие: более 100 г/фут3 (3,5 мг/см3), более 200 г/фут3 (7 мг/см3), более 300 г/фут3 (10,5 мг/см3), более 400 г/фут3 (14 мг/см3), более 500 г/фут3 (17,5 мг/см3), от приблизительно 75 г/фут3 (2,625 мг/см3) до приблизительно 350 г/фут3 (12,25 мг/см3), от приблизительно 100 г/фут3 (3,5 мг/см3) до приблизительно 300 г/фут3 (10,5 мг/см3) и от приблизительно 100 г/фут3 (3,5 мг/см3) до приблизительно 250 г/фут3 (8,75 мг/см3).

Для вариантов осуществления, согласно которым катализатор представляет собой часть композиции пористого оксидного покрытия, это пористое оксидное покрытие может дополнительно содержать связующее вещество, содержащее Ce или диоксид церия. Согласно таким вариантам осуществления, содержание частиц Ce в связующем веществе является значительно больше, чем содержание частиц Ce в катализаторе.

Кроме того, заявители обнаружили, что вышеупомянутая процедура однореакторного синтеза допускает регулирование соотношения SAR катализатора на основании состава исходной смеси для синтеза. Соотношения SAR, составляющие, например, от 25 до 150, от 25 до 50, от 50 до 100, от 30 до 50, от 30 до 40 и от 25 до 35, могут селективно устанавливаться на основании состава исходной смеси для синтеза и/или посредством регулирования других технологических параметров. Соотношение SAR цеолитов можно определять посредством традиционного анализа. Данное соотношение должно представлять собой, с максимально возможной точностью, соотношение в жестком атомном каркасе цеолитного кристалла и исключать атомы кремния или алюминия, которые содержатся в связующем веществе или присутствуют, в катионной или другой форме, в объеме каналов. Следует понимать, что может оказаться чрезвычайно затруднительным непосредственное измерение соотношения SAR цеолита после того, как он объединяется со связующим материалом. Соответственно, соотношение SAR представлено в настоящем документе как соотношение SAR, которое имеет исходный цеолит, т.е. цеолит, используемый для изготовления катализатора, и которое измеряется перед тем, как данный цеолит объединяется с другими компонентами катализатора.

В результате осуществления вышеупомянутой процедуры однореакторного синтеза могут получаться цеолитные кристаллы, имеющие однородные размеры и формы при относительно низкой степени агломерации. Кроме того, в результате осуществления процедуры синтеза могут получаться цеолитные кристаллы, причем средний размер данных кристаллов составляет от приблизительно 0,1 до приблизительно 10 мкм, например, от приблизительно 0,5 до приблизительно 5 мкм, от приблизительно 0,1 до приблизительно 1 мкм, от приблизительно 1 до приблизительно 5 мкм, от приблизительно 3 до приблизительно 7 мкм и т.д. Согласно определенным вариантам осуществления, крупные кристаллы измельчаются с использованием струйной мельницы или другой технологии измельчения частиц посредством взаимного трения до среднего размера, составляющего от приблизительно 1,0 до приблизительно 1,5 мкм, чтобы упрощалось нанесение содержащей катализатор суспензии, которая образует пористое оксидное покрытие на подложке, такой как проточная монолитная подложка.

Размер кристалла представляет собой длину одного ребра грани кристалла. Непосредственное измерение размера кристалла может осуществляться с использованием микроскопических методов, таких как сканирующая электронная микроскопия (СЭМ) и просвечивающая электронная микроскопия (ПЭМ). Для определения среднего размер частиц могут также использоваться и другие технологии, такие как дифракция и рассеяние лазерного излучения. Помимо среднего размера кристаллов, каталитические композиции предпочтительно содержат, в основном, кристаллы, у которых размеры составляют более чем приблизительно 0,1 мкм, предпочтительно от приблизительно 0,5 и до приблизительно 5 мкм, в том числе от приблизительно 0,5 до приблизительно 5 мкм, от приблизительно 0,7 до приблизительно 5 мкм, от приблизительно 1 до приблизительно 5 мкм, от приблизительно 1,5 до приблизительно 5,0 мкм, от приблизительно 1,5 до приблизительно 4,0 мкм, от приблизительно 2 до приблизительно 5 мкм или от приблизительно 1 мкм до приблизительно 10 мкм.

Катализаторы согласно настоящему изобретению являются особенно пригодными для применения в гетерогенных каталитических реакционных системах, в которых твердый катализатор находится в контакте с газообразным реагентом. Чтобы улучшались характеристики площади контактной поверхности, механической устойчивости и/или потока текучей среды, катализаторы могут находиться на поверхности и/или в объеме подложки, предпочтительно пористой подложки. Согласно определенным вариантам осуществления, пористое оксидное покрытие, содержащий катализатор, наносится на инертную подложку, такую как гофрированная металлическая плита или ячеистый кордиеритовый брикет.

В качестве альтернативы, катализатор перемешивается с другими компонентами, такими как наполнители, связующие вещества и армирующие вещества, и получается пригодная для экструзии паста, которая затем экструдируется через экструзионную головку, и получается ячеистый брикет. Соответственно, согласно определенным вариантам осуществления, предлагается каталитическое изделие, содержащее катализатор JMZ-2, описанный в настоящем документе, который наносится на поверхность и/или вводится в объем подложки.

Согласно определенным аспектам настоящего изобретения, предлагается каталитическое пористое оксидное покрытие. Пористое оксидное покрытие, содержащее катализатор JMZ-3, который описывается в настоящем документе, предпочтительно наносится как раствор, суспензия или взвесь. Подходящие покрытия представляют собой поверхностные покрытия, покрытия, которые частично проникают в объем подложки, покрытия, которые проникают в подложку, или их некоторые сочетания.

Пористое оксидное покрытие может также содержать некаталитические компоненты, такие как наполнители, связующие вещества, стабилизаторы, реологические модификаторы и другие добавки, в том числе один или несколько материалов, представляющих собой оксид алюминия, диоксид кремния, нецеолитный двойной оксид кремния и алюминия, диоксид титана, диоксид циркония, диоксид церия. Согласно определенным вариантам осуществления, каталитическая композиция может содержать порообразующие вещества, такой как графит, целлюлоза, крахмал, полиакрилат, полиэтилен и т.д. Эти дополнительные компоненты не обязательно должны катализировать желательные реакции, но вместо этого они повышают эффективность каталитического материала, например, посредством расширения его рабочего температурного интервала, увеличения площади контактной поверхности катализатора, усиления сцепления катализатора с подложкой и т.д. Согласно предпочтительным вариантам осуществления, содержание пористого оксидного покрытия составляет более чем 0,3 г/дюйм3 (18,3 мг/см3), в том числе более чем 1,2 г/дюйм3 (73,2 мг/см3), более чем 1,5 г/дюйм3 (91,5 мг/см3), более чем 1,7 г/дюйм3 (103,7 мг/см3) или более чем 2,00 г/дюйм3 (122 мг/см3), и предпочтительно менее чем 3,5 г/дюйм3 (213,5 мг/см3), в том числе менее чем 2,5 г/дюйм3 (152,5 мг/см3). Согласно определенным вариантам осуществления, пористое оксидное покрытие наносится на подложку таким образом, что содержание составляет приблизительно от 0,8 г/дюйм3 (48,8 мг/см3) до 1,0 г/дюйм3 (61 мг/см3), от 1,0 г/дюйм3 (61 мг/см3) до 1,5 г/дюйм3 (91,5 мг/см3) или от 1,5 г/дюйм3 (91,5 мг/см3) до 2,5 г/дюйм3 (152,5 мг/см3).

Две из наиболее распространенных конструкций подложек представляют собой пластинчатая и ячеистая конструкции. Предпочтительные подложки, предназначенные, в частности, для мобильных приложений, представляют собой проточные монолитные подожки, имеющие так называемую ячеистую геометрию, в которой присутствуют многочисленные прилегающие параллельные каналы, которые являются открытыми с обоих концов и, как правило, проходят от поверхности впуска до поверхности выпуска подложки, и в результате этого обеспечивается высокое соотношение площади поверхности и объема. Для определенных приложений ячеистая проточная монолитная подложка предпочтительно имеет высокую плотность ячеек, которая составляет, например, приблизительно от 600 до 800 ячеек на квадратный дюйм (от 94 до 124 ячеек на 1 см2), и/или среднюю толщину внутренних стенок, которая составляет приблизительно от 0,18 до 0,35 мм и предпочтительно приблизительно от 0,20 до 0,25 мм. Для других определенных приложений ячеистая проточная монолитная предпочтительно имеет низкую плотность ячеек, которая составляет приблизительно от 150 до 600 ячеек на квадратный дюйм (от 23 до 94 ячеек на 1 см2) и предпочтительнее приблизительно от 200 до 400 ячеек на квадратный дюйм (от 31 до 62 ячеек на 1 см2). Предпочтительно ячеистые монолитные подложки являются пористыми. Помимо кордиерита, карбида кремния, нитрида кремния, керамических материалов и металлов, другие материалы, которые могут использоваться для подложки, представляют собой нитрид алюминия, нитрид кремния, титанат алюминия, α-оксид алюминия, муллит, например, игольчатый муллит, поллуцит, термит, такой как Al2O3/Fe, Al2O3/Ni или B4C/Fe, или композитные материалы, содержащие в качестве ингредиентов любые двух или более из вышеупомянутых материалов. Предпочтительные материалы включают кордиерит, карбид кремния и титанат алюминия.

Катализаторы пластинчатого типа имеют меньшие перепады давления и являются в меньшей степени подверженными закупориванию и засорению, чем катализаторы ячеистого типа, преимущество которых представляет собой высокая эффективность в стационарных приложениях, но пластинчатые конфигурации могут оказываться значительно более крупными и более дорогостоящими. Ячеистая конфигурация, как правило, имеет меньшие размеры, чем пластинчатая конфигурация, что представляет собой преимущество в мобильных приложениях, но она имеет более высокие перепады давления и является более подверженной закупориванию. Согласно определенным вариантам осуществления пластинчатая подложка изготавливается из металла, предпочтительно гофрированного металла.

Согласно определенным вариантам осуществления настоящего изобретения, предлагается каталитическое изделие, изготовленное способом, который описывается в настоящем документе. Согласно конкретному варианту осуществления, каталитическое изделие изготавливается способом, который включает стадии нанесения каталитической композиции JMZ-2, предпочтительно в форме пористого оксидного покрытия, на подложку в качестве слоя, в том числе до или после того, как на подложку наносится, по меньшей мере, один дополнительный слой другой композиции для обработки выхлопного газа. Один или несколько слоев катализатора на подложке, содержащей слой катализатора JMZ-2, располагаются как последовательные слои. При упоминании в настоящем документе термин "последовательные" по отношению к слоям катализатора на подложке означает, что каждый слой находится в контакте с одним или двумя прилегающими к нему слоями, и что слои катализатора на подложке в целом располагаются один поверх другого.

Согласно определенным вариантам осуществления, катализатор JMZ-2 располагается на подложке в качестве первого слоя, а другая композиция, такая как катализатор окисления, катализатор восстановления, очищающий компонент или удерживающий NOx компонент, располагается на подложке в качестве второго слоя. Согласно другим вариантам осуществления, катализатор JMZ-2 располагается на подложке в качестве второго слоя, а другая композиция, такая как катализатор окисления, катализатор восстановления, очищающий компонент, или удерживающий NOx компонент, располагается на подложке в качестве первого слоя. При упоминании в настоящем документе термины "первый слой" и "второй слой" используются для описания относительных положений слоев катализатора в каталитическом изделии по отношению к нормальному направлению потока выхлопного газа, который проходит сквозь каталитическое изделие и/или над его поверхностью. В нормальных условиях потока выхлопного газа этот выхлопной газ вступает в контакт с первым слоем до того, как он вступает в контакт со вторым слоем. Согласно определенным вариантам осуществления, второй слой наносится на инертную подложку в качестве нижнего слоя, а первый слой представляет собой верхний слой, который наносится на поверхность второго слоя в форме последовательного ряда подслоев. Согласно таким вариантам осуществления, выхлопной газ пронизывает первый слой (и, следовательно, вступает с ним в контакт) до того, как он вступает в контакт со вторым слоем, и после этого возвращается через первый слой и выходит из каталитического изделия. Согласно другим вариантам осуществления, первый слой представляет собой первую зону, которая находится на расположенной выше по потоку части подложки, а второй слой располагается на подложке в качестве второй зоны, причем вторая зона находится ниже по потоку относительно первой зоны.

Согласно еще одному варианту осуществления, каталитическое изделие изготавливается способом, который включает стадии нанесения каталитической композиции JMZ-2, предпочтительно в форме пористого оксидного покрытия, на подложку в качестве первой зоны, и последующее нанесение, по меньшей мере, одной дополнительной композиции для обработки выхлопного газа на подложку в качестве второй зоны, причем, по меньшей мере, часть первой зоны располагается ниже по потоку относительно второй зоны. В качестве альтернативы, каталитическая композиция JMZ-2 может быть нанесена на подложку во второй зоне, которая располагается ниже по потоку относительно первой зоны, содержащей дополнительную композицию. Примерные дополнительные композиции представляют собой катализаторы окисления, катализаторы восстановления, очищающие компоненты (например, в отношении серы, воды и т.д.) или удерживающие NOx компоненты.

Чтобы уменьшить объем пространства, которое требуется для выхлопной системы, индивидуальные компоненты выхлопной системы согласно определенным вариантам осуществления предназначаются для осуществления более чем одной функции. Например, нанесение катализатора СКВ на фильтрующую подложку с пристеночным течением вместо проточной подложки служит для уменьшения габаритных размеров системы обработки выхлопного газа, позволяя одой подложке служить для осуществления двух функций, включая каталитическое уменьшение концентрации NOx в выхлопном газе и механическое отделение сажи от выхлопного газа. Соответственно, согласно определенным вариантам осуществления, подложка представляет собой ячеистый фильтр с пристеночным течением или фильтр неполного потока. Фильтры с пристеночным течением являются аналогичными проточным ячеистым подложкам в том, что в них содержатся многочисленные прилегающие параллельные каналы. Однако каналы проточных ячеистых подложек являются открытыми с обоих концов, в то время как каналы подложек с пристеночным течением имеют один закрытый конец, причем закрытыми оказываются противоположные концы соседних каналов, которые располагаются в шахматном порядке. Чередование закрытых концы каналов препятствует тому, что газ, который поступает на сторону впуска подложки, протекает насквозь через канал и выходит из него. Вместо этого выхлопной газ поступает на переднюю поверхность подложки и проходит приблизительно половину длины каналов, где он с усилием проходит через стенки канала перед тем, как он поступает во вторую половину каналов и выходит через обратную поверхность подложки.

Стенка подложки имеет такую пористость и размер пор, что она является газопроницаемой, но отделяет от газа основную массу твердого вещества, такого как сажа, когда газ проходит через стенку. Предпочтительные подложки с пристеночным течением представляют собой высокоэффективные фильтры. Фильтры с пристеночным течением для использования согласно настоящему изобретению предпочтительно имеют эффективность, составляющую, по меньшей мере, 70%, по меньшей мере, приблизительно 75%, по меньшей мере, приблизительно 80% или, по меньшей мере, приблизительно 90%. Согласно определенным вариантам осуществления, эффективность составляет от приблизительно 75 до приблизительно 99%, от приблизительно 75 до приблизительно 90%, от приблизительно 80 до приблизительно 90% или от приблизительно 85 до приблизительно 95%. Здесь эффективность определяется по отношению к саже и другим материалам, имеющим аналогичные размеры частиц, а также к концентрациям твердых частиц, которые, как правило, присутствуют в выхлопном газе традиционных дизельных двигателей. Например, твердые частицы в выхлопном газе дизельного двигателя могут иметь размеры, составляющие от 0,05 мкм до 2,5 мкм. Таким образом, эффективность может определяться на основании данного интервала или отрезка интервала, составляющего, например, от 0,1 до 0,25 мкм, от 0,25 до 1,25 мкм или от 1,25 до 2,5 мкм.

Пористость представляет собой процентную долю пустого пространства в пористой подложке и связана с противодавлением в выхлопной системе: как правило, чем ниже пористость, тем выше противодавление. Предпочтительная пористая подложка имеет пористость, составляющую от приблизительно 30 до приблизительно 80%, например, от приблизительно 40 до приблизительно 75%, от приблизительно 40 до приблизительно 65% или от приблизительно 50 до приблизительно 60%.

Взаимосвязанность пор, которая измеряется как процентная доля по отношению к полному объему пустого пространства подложки, представляет собой степень, в которой поры, пустоты и/или каналы соединяются, образуя непрерывные пути, пронизывающие насквозь пористую подложку, т.е. проходящие от поверхности впуска до поверхности выпуска. В отличие от пористости, взаимосвязанность пор представляет собой сумму объема закрытых пор и объема пор, которые проходят только к одной из поверхностей подложки. Пористая подложка имеет объемную взаимосвязанность пор, которая составляет предпочтительно, по меньшей мере, приблизительно 30% и предпочтительнее, по меньшей мере, приблизительно 40%.

Средний размер пор пористой подложки также представляет собой важный параметр для фильтрования. Средний размер пор можно определять, используя любой приемлемый метод, включая ртутную порометрию. Средний размер пор пористой подложки должен принимать достаточно высокое значение, чтобы обеспечивать низкое противодавление, и в то же время сохранять достаточную эффективность за счет самой подложки, посредством нанесения слоя сажи на поверхность подложка или с использованием сочетания обоих способов. Предпочтительные пористые подложки имеют средний размер пор, составляющий от приблизительно 10 до приблизительно 40 мкм, например, от приблизительно 20 до приблизительно 30 мкм, от приблизительно 10 до приблизительно 25 мкм, от приблизительно 10 до приблизительно 20 мкм, от приблизительно 20 до приблизительно 25 мкм, от приблизительно 10 до приблизительно 15 мкм и от приблизительно 15 до приблизительно 20 мкм.

Как правило, изготовление экструдированного твердого изделия, содержащего катализатор JMZ-2, включает смешивание катализатора JMZ-2, связующего вещества, необязательного повышающего вязкость органического соединения и получение гомогенной пасты, в которую затем добавляются связующий/матричный компонент или его предшественник и необязательно один или несколько веществ, представляющих собой стабилизированный диоксид церия и неорганические волокна. Смесь уплотняют, используя перемешивающее или смесительное устройство или экструдер. В смеси вводятся органические добавки, такие как связующие вещества, порообразующие вещества, пластификаторы, поверхностно-активные вещества, смазочные вещества, диспергирующие вещества, представляющие собой технологические добавки, которые усиливают смачивание, и, таким образом, образуется однородная смесь. Полученный в результате пластический материал затем подвергают формованию, используя, в частности, экструзионный пресс или экструдер, включающий экструзионную головку, и полученные в результате формы подвергаются высушиванию и прокаливанию. Органические добавки "выжигаются" в течение прокаливания экструдированного твердого изделия. Катализатор JMZ-2 может также представлять собой пористое оксидное покрытие, или он может наноситься другим способом на экструдированное твердое изделие, образуя один или несколько подслоев, которые остаются на поверхности или проникают внутрь, занимая полностью или частично объем экструдированного твердого изделия.

Экструдированные твердые изделия, содержащие катализаторы JMZ-2 согласно настоящему изобретению, как правило, имеют единую структуру, которую образуют ячейки, имеющие однородные размеры, и параллельные каналы, проходящие от первого конца до второго конца. Определяющие каналы стенки каналов являются пористыми. Как правило, многочисленные каналы экструдированного твердого изделия окружает наружная "оболочка". Может быть изготовлено экструдированное твердое изделие, имеющее любое желательное поперечное сечение, такое как круглое, квадратное или овальное.

Индивидуальные каналы из множества каналов могут быть квадратными, треугольными, шестиугольными, круглыми и т.д. На первом (расположенном выше по потоку) конце каналы могут быть блокированы, например, подходящим керамическим цементом, а также каналы, не блокированные на первом (расположенном выше по потоку) конце, могут быть блокированы на втором (расположенном ниже по потоку) конце, образуя фильтр с пристеночным течением. Как правило, расположение блокированных каналов на первом (расположенном выше по потоку) конце напоминает шахматную доску при аналогичном расположении блокированных и открытых расположенных ниже по потоку концов каналов.

Связующий/матричный компонент предпочтительно выбирается из группы, которую составляют кордиерит, нитриды, карбиды, бориды, интерметаллические соединения, алюмосиликат лития, шпинель, необязательно легированный оксид алюминия, источник диоксида кремния, диоксид титана, диоксид циркония, двойной оксид титана и циркония, циркон и смеси любых двух или более из данных материалов. Паста может необязательно содержать армирующие неорганические волокна, выбранные из группы, которую составляют углеродные волокна, стеклянные волокна, металлические волокна, борные волокна, волокна оксида алюминия, волокна диоксида кремния, волокна двойного оксида кремния и алюминия, волокна карбида кремния, волокна титанита калия, волокна бората алюминия и керамические волокна.

Связующий/матричный компонент на основе оксида алюминия предпочтительно представляет собой гамма-оксид алюминия, но он может также представлять собой любой другой переходный оксид алюминия, т.е. альфа-оксид алюминия, бета-оксид алюминия, хи-оксид алюминия, ита-оксид алюминия, ро-оксид алюминия, каппа-оксид алюминия, тета-оксид алюминия, дельта-оксид алюминия, легированный лантаном бета-оксид алюминия и смеси любых двух или более из таких переходных модификаций оксида алюминия. Оказывается предпочтительным, что для легирования оксида алюминия используется, по меньшей мере, один не представляющий алюминий элемент, который повышает термическую устойчивость оксида алюминия. Подходящие элементы для легирования оксида алюминия, представляют собой кремний, цирконий, барий, лантаниды и смеси любых двух или более из данных элементов. Подходящие в качестве легирующих элементов лантаниды представляют собой La, Ce, Nd, Pr, Gd и смеси любых двух или более из данных элементов.

Источники диоксида кремния могут представлять собой золь диоксида кремния, кварц, плавленый или аморфный диоксид кремния, силикат натрия, аморфный алюмосиликат, алкоксисилан, кремнийорганическое полимерное связующее вещество, такое как метилфенилсилоксановый полимер, глина, тальк или смесь любых двух или более из данных веществ. В этом списке диоксид кремния может представлять собой собственно SiO2, полевой шпат, муллит, двойной оксид кремния и алюминия, двойной оксид кремния и магния, двойной оксид кремния и циркония, двойной оксид кремния и тория, двойной оксид кремния и бериллия, двойной оксид кремния и титана, тройной оксид кремния, алюминия и циркония, тройной оксид кремния, алюминия и магния, тройной оксид кремния, магния и циркония, тройной оксид кремния, алюминия и тория и смеси любых двух или более из данных веществ.

Катализатор JMZ-2 предпочтительно диспергируется и предпочтительнее равномерно диспергируется во всем объеме экструдированного каталитического изделия.

В том случае, где какое-либо из вышеупомянутых экструдированных твердых изделий представляет собой фильтр с пристеночным течением, пористость этого фильтра с пристеночным течением может составлять от 30 до 80%, в том числе от 40 до 70%. Пористость и объем пор, а также радиус пор можно измерять, например, с использованием ртутной интрузионной порометрии.

Катализатор JMZ-2, описанный в настоящем документе, может ускорять реакцию восстановителя, предпочтительно аммиака, с оксидами азота, в которой селективно образуются элементарный азот (N2) и вода (H2O). Таким образом, согласно одному варианту осуществления, катализатор может иметь такой состав, чтобы преимущественно ускорять восстановление оксидов азота восстановителем (т.е. представлять собой катализатор СКВ). Примеры таких восстановителей представляют собой углеводороды (например, C3-C6-углеводороды), а также азотистые восстановители, такие как аммиак, аммиак и гидразин или любой подходящий предшественник аммиака, такой как карбамид ((NH2)2CO), карбонат аммония, карбамат аммония, гидрокарбонат аммония или формиат аммония.

Катализатор JMZ-2 описанный в настоящем документе может также катализировать окисление аммиака. Таким образом, согласно еще одному варианту осуществления, катализатор может иметь такой состав, чтобы преимущественно ускорять окисление аммиака кислородом, в частности, снижать концентрации аммиака, которые обычно присутствуют ниже по потоку относительно катализатора СКВ, представляя собой, например, катализатор окисления аммиака (ОА), такой как катализатор окисления остаточного аммиака (ООА). Согласно определенным вариантам осуществления, катализатор JMZ-2 располагается так, что он образует верхний слой, покрывающий окислительный нижележащий слой, причем данный нижележащий слой содержит катализатор на основе металла платина группа (МПГ) или катализатор без МПГ. Предпочтительно каталитический компонент в нижележащем слое покрывает имеющую высокую удельную площадь поверхности подложку, которая представляет собой оксид алюминия, но не ограничивается этим.

Согласно еще одному варианту осуществления, операции СКВ и ОА осуществляются последовательно, причем для обоих процессов используется каталитическое изделие, содержащее катализатор JMZ-2, который описывается в настоящем документе, и процесс СКВ осуществляется выше по потоку относительно процесса ОА. Например, каталитическая композиция для СКВ может находиться на стороне впуска фильтра, а каталитическая композиция для ОА может находиться на стороне выпуска фильтра.

Соответственно, предлагается способ восстановления соединений NOx или окисления NH3 в газе, который включает выдерживание газа в контакте с каталитической композицией, описанной в настоящем документе, в целях каталитического восстановления соединений NOx в течение достаточного времени для снижения уровня содержания соединений NOx и/или NH3 в газе. Согласно определенным вариантам осуществления, предлагается каталитическое изделие, содержащее катализатор окисления остаточного аммиака, который располагается ниже по потоку относительно катализатора селективного каталитического восстановления (СКВ). Согласно таким вариантам осуществления, катализатор окисления остаточного аммиака обеспечивает окисление, по меньшей мере, части любого азотистого восстановителя, который не расходуется в процессе селективного каталитического восстановления. Например, согласно определенным вариантам осуществления, катализатор окисления остаточного аммиака располагается на стороне выпуска фильтра с пристеночным течением, а катализатор СКВ находится на расположенной выше по потоку стороне фильтра. Согласно другим определенным вариантам осуществления, катализатор окисления остаточного аммиака находится на расположенном ниже по потоку конце проточной подложки, а катализатор СКВ находится на расположенном выше по потоку конце проточной подложки. Согласно другим вариантам осуществления, катализатор окисления остаточного аммиака и катализатор СКВ находятся на отдельных брикетах в составе выхлопной системы. Эти отдельные брикеты могут находиться вблизи и вступать в контакт друг с другом или разделяться определенным расстояние, при том условии, что они находятся в гидравлическом сообщении друг с другом, и при том условии, что брикет катализатора СКВ располагается выше по потоку относительно брикета катализатора окисления остаточного аммиака.

Согласно определенным вариантам осуществления, процессы СКВ и/или ОА происходят при температуре, составляющей, по меньшей мере, 100°C. Согласно еще одному варианту осуществления, эти процессы происходят при температуре, составляющей от приблизительно 150°C до приблизительно 750°C. Согласно конкретному варианту осуществления, температура составляет от приблизительно 175 до приблизительно 550°C. Согласно еще одному варианту осуществления, температура составляет от 175 до 400°C. Согласно еще одному варианту осуществления, температура составляет от 450 до 900°C, предпочтительно от 500 до 750°C, от 500 до 650°C, от 450 до 550°C или от 650 до 850°C. Варианты осуществления с использованием температуры, составляющей более чем 450°C, являются особенно пригодными для применения в обработке выхлопных газов от дизельных двигателей грузовых и легковых автомобилей, которые оборудованы выхлопными системами, содержащими (необязательно каталитические) фильтры, которые предназначаются для отделения твердых частиц, и активно регенерируются, например, посредством введения углеводородов в выхлопную систему выше по потоку относительно фильтра, причем цеолитный катализатор для использования согласно настоящему изобретению располагается ниже по потоку относительно фильтра.

Согласно еще одному аспекту настоящего изобретения, предлагается способ восстановления соединений NOx и/или окисления NH3 в газе, который включает выдерживание газа в контакте с катализатором, описанный в настоящем документе, в течение достаточного времени в целях снижения уровня содержания соединений NOx в газе. Способы согласно настоящему изобретению могут включать одну или несколько из следующих стадий: (a) накопление и/или сжигание сажи, которая находится в контакте с впуском каталитического фильтра; (b) введение азотистого восстановителя в поток выхлопного газа перед его введением в контакт с каталитическим фильтром, предпочтительно без промежуточных каталитических стадий, включающих обработку NOx и восстановителя; (c) образование NH3 над адсорбирующим NOx катализатором или ловушкой обедненного NOx и предпочтительное использование такого NH3 в качестве восстановителя в реакции, происходящей ниже по потоку относительно СКВ; (d) введение в контакт потока выхлопного газа с каталитическим конвертером-нейтрализатором (ККН) в целях окисления имеющей углеводородную основу растворимой органической фракции (РОФ) и/или монооксида углерода до CO2, и/или окисления NO до NO2, который, в свою очередь, может использоваться для окисления твердого вещества на фильтре, отделяющем твердые частицы; и/или в целях восстановления твердого вещества (ТВ) в выхлопном газе; (e) введение в контакт выхлопного газа с одним или несколькими проточными изделиями, содержащими катализатор СКВ, в присутствии восстановителя в целях уменьшения концентрации NOx в выхлопном газе; и (f) введение в контакт выхлопного газа с катализатором окисления остаточного аммиака, предпочтительно ниже по потоку относительно катализатора СКВ в целях окисления основной, если не всей массы аммиака перед выпуском выхлопного газа в атмосферу или пропусканием выхлопного газа через рециркуляционный контур перед впуском/возвратом выхлопного газа в двигатель.

Согласно еще одному варианту осуществления, вся масса или, по меньшей мере, часть азотистого восстановителя, в частности, NH3, который расходуется в процессе СКВ, могут обеспечивать адсорбирующий катализатор восстановления NOx (АКВ), ловушка обедненных оксидов азота (ЛОА), или аккумулятор/катализатор восстановления NOx (АКВО), расположенный выше по потоку относительно катализатора СКВ, например, катализатор СКВ согласно настоящему изобретению, расположенный на фильтре с пристеночным течением. Компоненты АКВ, пригодные для использования согласно настоящему изобретению, включают в каталитическом сочетании основной материал (такого как щелочные металлы, щелочноземельные металлы или редкоземельные металлы, включая оксиды щелочных металлов, оксиды щелочноземельных металлов и их сочетания) и драгоценный металл (такой как платина), а также необязательный компонент для каталитического восстановления, такой как родий. Конкретные типы основных материалов, пригодных для использования в АКВ, представляют собой оксид цезия, оксид калия, оксид магния, оксид натрия, оксид кальция, оксид стронция, оксид бария и их сочетания. Драгоценные металл предпочтительно присутствуют в концентрации, составляющей от приблизительно 10 г/фут3 (0,035 мг/см3) до приблизительно 200 г/фут3 (7 мг/см3), в том числе от 20 г/фут3 (0,07 мг/см3) до 60 г/фут3 (0,21 мг/см3). В качестве альтернативы, драгоценный металл в катализаторе характеризуется средней концентрацией, которая может составлять от приблизительно 40 г/фут3 (0,14 мг/см3) до приблизительно 100 г/фут3 (3,5 мг/см3).

В определенных условиях в течение периодически происходящей регенерации обогащенной смеси NH3 может производиться над адсорбирующим катализатором восстановления NOx. Катализатор СКВ, расположенный ниже по потоку относительно адсорбирующего катализатора восстановления NOx, может повышать общую эффективность системы восстановления NOx. В комбинированной системе катализатор СКВ способен удерживать высвобождающийся NH3 из катализатора АКВ в течение регенерации обогащенной смеси и использовать накопленный NH3 в целях селективного восстановления некоторой части или всей массы NOx, которая проходит через катализатор АКВ в течение работы в нормальных условиях обедненной смеси.

Способ обработки выхлопного газа, который описывается в настоящем документе, может осуществляться в отношении выхлопного газа, производимого в процессе сгорания, который осуществляют, например, двигатель внутреннего сгорания (в том числе мобильный или стационарный), газовая турбина и работающая на угольном или жидком топливе электростанция. Данный способ может также использоваться для обработки газа, который производят промышленные процессы, такие как переработка нефти, нагреватели и бойлеры нефтеперерабатывающих заводов, печи, химическая обрабатывающая промышленность, коксовые печи, заводы по переработке муниципальных отходов и установки для сжигания и т.д. Согласно конкретному варианту осуществления, данный способ используется для обработки выхлопного газа от работающего на обедненной смеси автомобильного двигателя внутреннего сгорания, такого как дизельный двигатель, работающий на обедненной смеси бензиновый двигатель или двигатель, использующий сжиженный нефтяной газ или природный газ.

Согласно определенным аспектам настоящего изобретения, предлагается система для обработки выхлопного газа, источниками которого являются процессы сгорания, которые осуществляют, например, двигатель внутреннего сгорания (в том числе мобильный или стационарный), газовая турбина, работающая на угольном или жидком топливе электростанция и т.д. Такие системы включают каталитическое изделие, содержащее катализатор JMZ-2, описанный в настоящем документе, и, по меньшей мере, один дополнительный компонент для обработки выхлопного газа, причем каталитическое изделие и, по меньшей мере, один дополнительный компонент предназначаются для функционирования в составе связной производственной единицы.

Согласно определенным вариантам осуществления, система включает каталитическое изделие, содержащее катализатор JMZ-2, который описывается в настоящем документе, трубопровод для направления потока выхлопного газа, источник азотистого восстановителя, расположенный выше по потоку относительно каталитического изделия. Система может включать регулятор для дозирования азотистого восстановителя в поток выхлопного газа только в том случае, когда определяется, что цеолитный катализатор способен катализировать восстановление NOx при температуре на уровне желательной эффективности, например, при температуре выше 100°C, выше 150°C или выше 175°C. Дозирование азотистого восстановителя может осуществляться таким образом, что от 60% до 200% теоретического количества аммиака присутствует в выхлопном газе, который поступает в катализатор СКВ, при вычислении для соотношений 1:1 NH3/NO и 4:3 NH3/NO2.

Согласно еще одному варианту осуществления, система содержит катализатор окисления (например, каталитический конвертер-нейтрализатор (ККН) для окисления монооксида азота в выхлопном газе до диоксида азота, который может располагаться выше по потоку относительно точки введения азотистого восстановителя в выхлопной газ. Согласно одному варианту осуществления, катализатор окисления предназначается для получения газового потока, который поступает в цеолитный катализатор СКВ и имеет объемное соотношение NO и NO2, составляющее, например, от приблизительно 4:1 до приблизительно 1:3, при температуре выхлопного газа на впуске катализатора окисления, составляющей от 250°C до 450°C. Катализатор окисления может содержать, по меньшей мере, один металл платиновой группы (или некоторое сочетание этих металлов), такой как платина, палладий, или родий, нанесенный на проточную монолитную подложку. Согласно одному варианту осуществления, в качестве, по меньшей мере, одного металла платиновой группы присутствует платина, палладий или сочетание платины и палладия. Металл платиновой группы может быть нанесен на имеющий высокую удельную площадь поверхности компонент пористого оксидного покрытия, такой как оксид алюминия, цеолит, такой как алюмосиликатный цеолит, диоксид кремния, нецеолитный двойной оксид кремния и алюминия, диоксид церия, диоксид циркония, диоксид титана или смешанный или композитный оксид, одновременно содержащий диоксид церия и диоксид циркония.

Согласно следующему варианту осуществления, подходящая фильтрующая подложка располагается между катализатором окисления и катализатором СКВ. В качестве фильтрующих подложек могут выбираться любые из вышеупомянутых подложек, например, фильтры с пристеночным течением. В том случае, где фильтр является каталитическим и содержит, например, катализатор окисления обсуждаемого выше типа, причем точка дозирования азотистого восстановителя предпочтительно располагается между фильтром и цеолитным катализатором. В качестве альтернативы, если фильтр является некаталитическим, устройство для дозирования азотистого восстановителя может располагаться между катализатором окисления и фильтром.

1. Способ синтеза цеолита, включающий:

изготовление реакционной смеси, содержащей (a) по меньшей мере один источник оксида алюминия, (b) по меньшей мере один источник диоксида кремния, (c) содержащее переходный металл аминное органическое темплатирующее вещество, которое представляет собой Cu-тетраэтиленпентамин (Cu-TEPA), (d) гидроксид щелочного металла и (e) отличное от первого второе органическое темплатирующее вещество, выбранное из группы, состоящей из N,N-диметил-3,5-диметилпиперидиния и 1,1-диэтил-2,6-диметилпиперидиния, в которой каждое из указанного содержащего переходный металл аминного органического темплатирующего вещества и отличного от него второго органического темплатирующего вещества является подходящим для образования каркасной структуры AEI, причем в данной реакционной смеси практически не содержится фтор;

нагревание реакционной смеси под аутогенным давлением, при температуре от 100 до 200°C в течение 1-20 суток для образования кристаллов цеолита, имеющих каркас AEI и необязательно каркас ITE и содержащих медь.

2. Способ по п.1, в котором реакционную смесь нагревают в течение 1-3 суток.

3. Способ по п.1, в котором указанное содержащее переходный металл аминное органическое темплатирующее вещество образуется непосредственно в реакционной смеси из индивидуальных компонентов, содержащих медь и тетраэтиленпентамин.

4. Способ по п.3, в котором реакционная смесь имеет следующий состав в форме массовых соотношений:

SiO2/Al2O3 10-100
OH-SiO2 0,5-2
Темплат 1/Темплат 2 0,01-0,3
Темплаты/SiO2 0,05-0,5
Переходный металл/Темплат 1 0,02-5
H2O/SiO2 20-80,

при этом темплат 1 представляет собой тетраэтиленпентамин (TEPA), темплат 2 выбирают из группы, состоящей из N,N-диметил-3,5-диметилпиперидиния и 1,1-диэтил-2,6-диметилпиперидиния, а переходный металл представляет собой медь.

5. Способ по п.3, в котором реакционная смесь имеет следующий состав в форме массовых соотношений:

SiO2/Al2O3 15-65
OH-SiO2 0,7-1,5
Темплат 1/Темплат 2 0,05-0,15
Темплаты/SiO2 0,10-0,25
Переходный металл/Темплат 1 0,1-2
H2O/SiO2 30-45,

при этом темплат 1 представляет собой тетраэтиленпентамин (TEPA), темплат 2 выбирают из группы, состоящей из N,N-диметил-3,5-диметилпиперидиния и 1,1-диэтил-2,6-диметилпиперидиния, а переходный металл представляет собой медь.

6. Композиция для обработки выхлопного газа, содержащая кристаллы цеолита, имеющие каркас AEI и необязательно каркас ITE и содержащие медь, которые получены или могут быть получены способом по любому из предшествующих пунктов.

7. Каталитическое изделие для обработки выхлопного газа, содержащее каталитическую композицию по п.6, которая находится на поверхности и/или в объеме ячеистой монолитной подложки.

8. Способ обработки выхлопного газа, включающий приведение в контакт выхлопного газа после сгорания, содержащего NOx и NH3, с каталитическим изделием по п.7 для селективного восстановления по меньшей мере части NOx до N2 и H2O или приведение в контакт выхлопного газа после сгорания, содержащего NH3, с каталитическим изделием по п.7 для окисления по меньшей мере части NH3.



 

Похожие патенты:

Изобретение относится к области получения кристаллических цеолитных материалов с заданными текстурными и морфологическими свойствами кристаллов, которые могут быть использованы в качестве компонентов катализаторов, а именно к цеолиту типа MOR в виде агломератов с габаритными размерами 3-5 мкм, образованных первичными игольчатыми кристаллами с толщиной 60-120 мкм, ориентированными вдоль кристаллографической оси с внешней поверхностью 35-50 м2/г в качестве катализатора превращения углеводородов.

Изобретение относится к синтезу водородной формы (Н-формы) цеолитов для использования в качестве катализаторов. Способ включает стадии: приготовления смеси, содержащей по меньшей мере один источник глинозема, по меньшей мере один источник кремнезема, и по меньшей мере один структурообразующий агент (SDA) в форме гидроксида, причем эта смесь по существу свободна от щелочных металлов; нагревания этой смеси под аутогенным давлением с перемешиванием или смешиванием в течение достаточного времени для кристаллизации кристаллов цеолита водородной формы, имеющих каркас AEI.

Изобретение относится к области получения кристаллических цеолитных материалов с заданными текстурными и морфологическими свойствами кристаллов, которые могут быть использованы в качестве компонентов катализаторов.

Изобретение относится к синтетическому цеолиту, способам его получения, к его применениям в качестве катализатора и сорбента, а также к способу превращения сырья, содержащего органическое соединение.

Группа изобретений относится к синтезу цеолитов. Предложен способ получения нанокристаллического цеолита структурного типа ВЕА, включающий пропитку твердых частиц силикагеля раствором реакционной смеси с получением прекурсора, характеризующегося составом, соответствующим области кристаллизации цеолита ВЕА, выдержку прекурсора в закрытом виде при комнатной температуре в течение 1,5-2 ч, кристаллизацию прекурсора в отсутствие свободной воды при 130-145°С в течение 12-36 ч.

Изобретение относится к синтезу цеолита SSZ-39 с помощью модифицированной композиции органического структуронаправляющего агента (OSDA), в которой часть OSDA заменена на один или более других органических оснований, которые сами по себе не являются OSDA для SSZ-39.

Настоящее изобретение относится к алюмосиликатному цеолиту, способу изготовления алюмосиликатного цеолита и кристаллическому цеолиту AEI. Алюмосиликатный цеолит содержит по меньшей мере 90% чистой фазы цеолита AEI.

Группа изобретений относится к молекулярному ситу, в частности к ультрамакропористому молекулярному ситу, а также к способу получения молекулярного сита и его применению в качестве катализатора.

Afx цеолит // 2732126
Предложены новая форма AFX цеолита, новая методика синтеза для получения чистой фазы AFX цеолита, каталитическое изделие для обработки выхлопного газа сгорания, включающее в себя цеолит, а также способ аккумулирования NOx, способ селективного восстановления NOx, способ окисления компонента выхлопного газа.

Способ очистки выхлопного газа, содержащего более 10 ч./млн серы, включает приведение в контакт газа, содержащего NOx и восстановитель, с каталитической композицией для каталитического восстановления, по меньшей мере, части NOx до N2, при этом указанная каталитическая композиция включает мелкопористое молекулярное сито, 0,5-5% мас.
Изобретение относится к каталитической композиции, способу ее получения и способу трансалкилирования сырья, содержащего алкилароматические углеводороды, с применением каталитической композиции.
Наверх