Пьезоэлектрический стенд

Использование: для возбуждения механических колебаний, которые могут быть использованы как вибрационные стенды при измерениях характеристик акселерометров или при оценках влияния вибраций на конкретное изделие. Сущность изобретения заключается в том, что пьезоэлектрический стенд содержит основание, платформу и пьезоэлементы, при этом пьезоэлементы выполнены плоскими шириной b, длиной l, толщиной t и наклеены на подложку шириной b, толщиной t, длиной (1…1,5)l, N склеенных пьезоэлементов расположены симметрично относительно оси платформы, при этом один конец каждого склеенного элемента жестко закреплен на основании, а второй закреплен эластичным компаундом на платформе, кроме того, размеры пьезоэлементов, массы основания М, платформы m удовлетворяют заданному условию. Технический результат: обеспечение возможности устранения необходимости регулировки платформы и основания на каждой частоте и исключение погрешностей, обусловленных этой регулировкой. 1 ил.

 

Изобретение относится к испытательной технике, а именно, к устройствам, возбуждающим механические колебания, которые могут быть использованы как вибрационные стенды при измерениях характеристик акселерометров или при оценках влияния вибраций на конкретное изделие.

Известны конструкции пьезоэлектрических вибростендов (авторское свидетельство СССР №773966 кл. G01Р 21/00, 1969; авторское свидетельство СССР №726455 G01М 7/00, 1977), состоящие из основания, платформы и набора пьезоэлементов между ними. Резонансные частоты существующих пьезоэлектрических вибростендов находятся в пределах десятков кГц, при этом амплитуда смещения платформы на частотах ω много меньших резонансной частоты ωР, пропорциональна амплитуде приложенного переменного напряжения u, а соответственно, ускорение платформы пропорционально величине u⋅ω2. Измерение частотной зависимости коэффициента преобразования акселерометра проводят при постоянной амплитуде ускорения, поэтому при использовании пьезоэлектрических стендов необходимо поддерживать постоянство величины u⋅ω2, что усложняет измерения и вносит дополнительные погрешности регулирования этой величины при изменении частоты.

Наиболее близким к предлагаемому решению является конструкция прототипа (см. книгу Ю.А. Иориша «Виброметрия» М. Машиностроение, 1963, стр. 635). В ней основание и платформа соединены между собой набором кольцевых пьезоэлементов, составленных друг за другом последовательно, при этом верхнее кольцо жестко закреплено на платформе, а нижнее на основании.

Техническая проблема, на решение которой направлено настоящее изобретение заключается в создании пьезоэлектрического стенда, упрощающего измерение частотных характеристик и исключающего дополнительные погрешности регулирования и поддерживания постоянства величины u⋅ω2.

Техническим результатом изобретения является то, что платформа и основание предлагаемого стенда колеблются с постоянными независящими от частоты ускорениями, поэтому устраняется необходимость их регулировки на каждой частоте, как в прототипе, исключаются погрешности обусловленные этой регулировкой, существенно, упрощаются и ускоряются измерения частотных характеристик акселерометров.

Сущность изобретения состоит в том, что в пьезостенде, содержащем основание и платформу, последние соединены между собой N биморфными элементами, включенными механически параллельно, расположенными симметрично относительно оси платформы, каждый из которых состоит из плоского пьезоэлемента длиной l, шириной b, толщиной t, наклеенного на подложку размерами b, t, (1÷1,5)l, один конец биморфного элемента закреплен жестко на основании, второй закреплен мягко, посредством эластичного компаунда на платформе, а размеры пьезоэлемента, масса основания М и масса платформы удовлетворяют условию:

где Е - модуль Юнга пьезокерамики;

М - масса основания;

m - масса платформы;

N - число биморфных элементов;

l, b, t - длина, ширина, толщина пьезоэлемента соответственно.

На низких частотах предлагаемый пьезостенд представляет две сосредоточенные массы m и М, связанные между собой пружиной жесткостью К, в качестве которой выступает совокупная жесткость N - биморфных элементов. Учитывая мягкое крепление биморфных элементов к платформе, два биморфных элемента расположенных вдоль одной линии можно рассматривать как балку, нагруженную в центре массой М, и опертую на свободные концы. При этих допущениях получено выражение, связывающее основные параметры пьезостенда с его резонансной частотой. На частотах выше 3 ωр ускорения масс m и М с погрешностью в пределах 10%, снижающейся с повышением частоты, можно считать постоянным. Амплитуда ускорений платформы и основания обратно пропорциональны их массам, поэтому в качестве платформы крепления акселерометра может быть использована любая из них.

На фиг. 1 представлена конструктивная схема пьезостенда включающая основание 1, платформу 2, пару соосных биморфных элементов состоящих из пьезоэлементов 3, наклеенных на подложку 4. Биморфные элементы жестко закреплены одним концом на основании 1, и мягко на платформе 2 посредством эластичного компаунда 5. Подложка может быть выполнена из металла или упругого диэлектрика.

Осуществление изобретения проводилось на макетном образце с массой платформы m≅0,4 кг, массой основания М≅2 кг. Использовалось четыре биморфных элемента с размерами пьезокерамики длина l=30 мм, ширина b=4 мм, толщина t=0,3 мм и длиной подложки 40 мм. Резонансная частота пьезостенда составила ~14 Гц, при этом амплитуда виброускорения основания была порядка и в диапазоне частот (0,03…1) кГц практически не зависела от частоты. В качестве эластичного компаунда использовался виксинт К-68. При измерениях акселерометр устанавливался на основание, которое изолировалось от опоры резиновыми амортизаторами.

Пьезоэлектрический стенд, содержащий основание, платформу и пьезоэлементы, отличающийся тем, что пьезоэлементы выполнены плоскими шириной b, длиной l, толщиной t и наклеены на подложку шириной b, толщиной t, длиной (1…1,5)l, N склеенных пьезоэлементов расположены симметрично относительно оси платформы, при этом один конец каждого склеенного элемента жестко закреплен на основании, а второй закреплен эластичным компаундом на платформе, кроме того, размеры пьезоэлементов, массы основания М, платформы m удовлетворяют условию:

где N - число склеенных пьезоэлементов;

Е - модуль Юнга пьезокерамики;

М - масса основания;

m - масса платформы;

l, b, t - длина, ширина, толщина пьезоэлемента соответственно.



 

Похожие патенты:

Группа изобретений относится к области машиностроения. Корректируют динамическое состояние рабочих органов технологических вибрационных машин.

Изобретение относится к области измерений, мониторинга, контроля состояния и поиска мест повреждения вибранагруженных объектов в целях своевременного определения износа элементов объекта и предотвращения их разрушения, определения типа и места воздействия на объект.

Заявленное изобретение относится к области анализа вибраций, в частности к анализу вибраций конструкции с использованием высокоскоростных видеоданных. Вариант осуществления устройства для анализа вибраций с использованием высокоскоростных видеоданных содержит систему камеры, выполненную с возможностью формирования по меньшей мере двух потоков высокоскоростных видеоданных конструкции, и модуль анализа данных, соединенный с системой камеры.
Изобретение относится к машиностроению, а именно к определению резонансной частоты и амплитуды резонансных колебаний. Измеритель собственного тона колебаний конструкции содержит акселерометр и пружину, причем акселерометр установлен на пружине, прикрепленной к конструкции.

Группа изобретений относится к области механических испытаний изделий, а именно к испытаниям изделий на вибрации, действующим по ортогональным направлениям. Способ включает последовательное вибронагружение объекта испытаний (ОИ) по трем ортогональным направлениям.

Группа изобретений относится к области механических испытаний изделий, а именно к испытаниям изделий на вибрации, действующим по ортогональным направлениям. Способ включает последовательное вибронагружение объекта испытаний (ОИ) по трем ортогональным направлениям.

Группа изобретений относится к измерительной технике и может быть использована при вибродиагностике оборудования. Устройство содержит блоки (26', 26", 26"') датчиков, данные измерений с которых можно посредством беспроводной связи передать на вычислительный блок (29).

Группа изобретений относится к измерительной технике и может быть использована при вибродиагностике оборудования. Устройство содержит блоки (26', 26", 26"') датчиков, данные измерений с которых можно посредством беспроводной связи передать на вычислительный блок (29).

Устройство относится к испытательной технике, может быть использовано для испытания на усталость образцов листовых материалов при изгибе. Установка содержит источник колебаний, захваты для крепления образцов и измерительное устройство.

Изобретение относится к области машиностроения. Корректируют динамическое состояние технологической машины.
Наверх