Способ получения фотодекарбоксилаз жирных кислот



Способ получения фотодекарбоксилаз жирных кислот
Способ получения фотодекарбоксилаз жирных кислот

Владельцы патента RU 2750455:

федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" (RU)
Др. Вера Дейдре Егер (DE)
Др. Ульрих Краусс (DE)
Проф. Др. Карл-Эрих Егер (DE)
Эрик Себастиан Купшке (DE)

Изобретение относится к биотехнологии, в частности к получению ферментов фотодекарбоксилаз жирных кислот (ФЖК). Заявлен способ производства ФЖК с контролируемым связыванием белка с определенным кофактором с использованием рибофлавин-ауксотрофных штаммов Е. coll. Процесс проводят путем конструирования плазмиды для рекомбинантной экспрессии ФЖК, трансформации экспрессионного рибофлавин-ауксотрофного штамма, культивирования трансформированных штаммов и последующей очистки белка ФЖК. Изобретение обеспечивает производство ФЖК в количествах, необходимых для биофизических и структурных исследований. 2 ил., 1 пр.

 

Изобретение относится к биотехнологии, в частности к получению ферментов фотодекарбоксилаз жирных кислот.

Фотодекарбоксилазы жирных кислот (ФЖК) представляют собой ферменты, способные производить алканы или алкены из жирных кислот под действием света. Белки этого класса были впервые идентифицированы в 2017 году в зеленых одноклеточных микроводорослях Chlorella variabilis и Chlamydomonas reinhardtii [1]. В качестве субстрата ФЖК могут использовать жирные кислоты средней и большой длины (12-22 атома углерода), которые далее превращаются в соответствующие углеводороды и углекислый газ. Наибольшую активность ФЖК демонстрируют при освещении синим светом с длиной волны между 400 и 520 нм. Ферменты ФЖК принадлежат к суперсемейству флавинадениндинуклеотид (ФАД) - связывающих белков, то есть, ФЖК связывают флавиновый кофермент и используют его при декарбоксилировании жирных кислот. Управление степенью связывания белка с ФАД, а также использование в эксперименте особо отобранных форм флавина вместо природных вариантов позволяет производить контролируемые биохимические и биофизические исследования ФЖК.

Известен способ получения ФЖК из водорослей, являющихся их природным источником - Chlamydomonas reinhardtii, штаммы CC124(nit1 nit2; mt-) и CC125(nit1 nit2; mt+); и Chlorella variabilis штамм NC64A [1]. Кофакторы для ФЖК при этом также синтезируются внутренними системами водорослей. Недостатками данного способа производства являются низкий уровень экспрессии ФЖК и сложность лабораторной работы с нативными организмами. Кроме того, связывание фермента и кофактора является в этом случае неконтролируемым процессом.

Известен способ получения ФЖК в клетках дрожжей Yarrowia lipolytica, штаммы Н222 и JMY5749 [2]. К недостаткам данного способа можно отнести то, что он используется для наблюдения за биосинтезом алканов и алкенов в клетках дрожжей, тогда как для биофизических и структурных исследований, а также некоторых применений в биотехнологии ФЖК должны быть выделены в чистом виде.

Наиболее близким к предлагаемому техническому решению является способ получения ФЖК путем рекомбинантной экспрессии в клетках E. coli, штамм BL21 [1,3-5]. Недостатком использования штамма BL21 для получения ФЖК являются неконтролируемое производство различных флавинов клеткой E.coli, что влечет за собой, соответственно, спонтанное связывание производимыми ФЖК случайных форм флавинов. Такое коферментное разнообразие белков в одном очищенном препарате существенно осложняет последующие биофизические и структурные исследования и их интерпретацию. Кроме того, было показано [1, 4], что при таком способе производства только 50-60% очищенных ФЖК имеют связанный кофактор, что также затрудняет многие последующие исследования и применения в биотехнологии.

Задачей технического решения является производство ФЖК с контролируемым связыванием белка с определенным кофактором.

Технический результат достигается путем использования штаммов E. coli, являющихся рибофлавиновыми ауксотрофами, для производства ФЖК. В данных системах пути собственного биосинтеза рибофлавина бактерией заблокированы, и имеется система импорта рибофлавина из экспрессионной среды. Таким образом, обеспечивается возможность максимально контролируемо и эффективно производить флавин-связывающие белки. Поскольку ФЖК также относятся к этому классу белков, применение данного экспрессионного штамма представляется для них наиболее предпочтительным. Примером такой экспрессионной системы может служить экспрессионный штамм Е. coli CmpX131(DE3) [6, 7]. Данный штамм является рибофлавиновым ауксотрофом и использует бактериальный рибофлавиновый транспортер для импорта рибофлавина из среды. Кроме того, данный штамм имеет систему дополнительной экспрессии флавокиназ - ферментов, катализирующих реакцию перехода рибофлавина в ФАД и ФМН.

Поставленная задача решается следующим образом.

1. Конструирование плазмиды для рекомбинантной экспрессии ФЖК

Рекомбинантные плазмидные ДНК конструируют на основе вектора, обеспечивающего индуцированную экспрессию генов в клетках Е. coli. Плазмида, помимо векторной части, содержит фрагмент ДНК, кодирующий изучаемую ФЖК.

2. Трансформация

В качестве штамма-реципиента используют вариации штаммов Е. coli, являющиеся рибофлавиновыми ауксотрофами. Плазмиды, несущие ген ФЖК, вводят в клетки с помощью процесса трансформации. Трансформированные штаммы отбирают на селективной среде, содержащей антибиотик. Трансформированные штаммы, в ответ на внесение в среду культивирования индуктора, способны производить белок ФЖК.

3. Культивирование

Трансформированный штамм культивируют в подходящей питательной среде с добавлением предпочтительной формы флавина. По достижении культурами штаммов ранней логарифмической фазы роста в среду культивирования вносят индуктор, инициируя тем самым производство целевого белка.

4. Очистка белка

Клетки штамма-продуцента с накопленным целевым белком разрушают, фрагменты клеточных стенок осаждают центрифугированием. ФЖК очищают из цитоплазматической фракции с помощью металл-афинной хроматографии, используя дополнительную последовательность из остатков гистидина в аминокислотной последовательности ФЖК. В качестве финального шага очистки белкового препарата используют метод гель-фильтрации.

Изобретение иллюстрируется следующим конкретным примером.

Пример

На основе экспрессионного вектора рЕТ28а была создана плазмида для рекомбинантной экспрессии ФЖК CvFAP из одноклеточной микроводоросли Chlorella variabilis. К N-концу изучаемой ФЖК были добавлены 6х-гистидиновый таг, белок тиоредоксин и сайт распознавания цистеиновой протеазой TEV. Полученной плазмидой трансформировали клетки Е. coli, штамм CmpX131(DE3). Трансформированные штаммы отбирали на селективной среде, содержащей антибиотик канамицин.

Предкультура трансформированных клеток выращивалась при температуре 15°С и постоянном вращении со скоростью 180 оборотов в минуту до достижения оптической плотности 10 на длине волны 600 нм. В две стеклянные колбы, объемом 2 л, помещалось по 300 мл экспрессионной среды Terrific Broth с добавлением 50 мкМ рибофлавина, растворенного в дистиллированной воде, а также предкультура клеток до конечной оптической плотности 0.1 на длине волны 600 нм. Бактерии культивировали при температуре 37°С и постоянном вращении со скоростью 180 оборотов в минуту до достижения оптической плотности 0.5 на длине волны 600 нм. Экспрессия гена ФЖК инициировалась добавлением 1 мМ ИПТГ и производилась при температуре 15°С и постоянном вращении со скоростью 180 оборотов в минуту в течение 66 часов. Наработанные таким образом клетки собирали центрифугированием клеточной культуры при 10000g в течение 10 мин при температуре 4°С. Полученный клеточный осадок замораживали и хранили при температуре -80°С.

Размороженные клетки ресуспендировали в буферном растворе, содержащем 500 мМ NaCl, 50 мМ Tris-HCl, рН 8.0, в отношении 20% клеток на 80% буферного раствора. Клетки разрушали с помощью прибора Emulsiflex-C5 high pressure homogenizer (Avestin, Ottawa, Ontario, Canada) при давлении 1500 бар. Сразу после разрушения к суспензии добавляли 10% глицерола. Неразрушенные клетки отделяли центрифугированием при 10000 g в течение 10 мин при температуре 4°С. Супернатант центрифугировали в течение 1 часа при 70000g и температуре 4°С.

Белок-содержащий супернатант смешивали с 3 мл смолы Ni-NTA (Qiagen, Hilden, Germany) в течение 12 часов при постоянном медленном перемешивании и температуре 4°С. Далее смолу промывали буферными растворами, содержащими 400 мМ NaCl, 50 мМ Tris-HCl, рН 8.0, 10% глицерола, а также 20 мМ и 40 мМ имидазола. Белок элюировали буферными растворами, содержащими 400 мМ NaCl, 50 мМ Tris-HCl, рН 8.0, 10% глицерола, а также 80, 100 и 200 мМ имидазола. Объем каждого из добавляемых буферных растворов составлял 30 мл. Собранные фракции анализировались с помощью электрофореза в полиакриламидном геле (Рисунок 1 А) и с помощью белкового иммуноблота (Рисунок 1 Б).

В качестве финального шага очистки белкового препарата использовали метод гель-фильтрации на хроматографической системе pure FPLC system с использованием разделяющей колонки Superdex 200 HiLoad column (обе: GE Healthcare, Chicago, IL, USA). Раствор белка после металл-аффинной хроматографии концентрировали и наносили на разделяющую колонку со скоростью 0.5 мл/мин. Для элюции белка использовался буферный раствор, содержащий 400 мМ NaCl, 50 мМ Tris, рН 8.0, 5% глицерола. Белок собирался фракциями, объемом по 1 мл. Пример гель-фильтрационного профиля белка ФЖК на разделяющей колонке Superdex 200 Increase 10/300 GL представлен на Рисунке 2.

Результатом явилось производство 2 мг белка ФЖК с 1 л культуры путем использования экспрессионной системы E. coli, штамм CmpX131(DE3).

Источники информации

[1] Blangy, S.; Moulin, S.; Billon, E.; Richaud, P.; Nurizzo, D.; Brettel, K.; Pignol, D.; Amoux, P.; Li-Beisson, Y.; Peltier, G.; Beisson, F. An Algal Photoenzyme Converts Fatty Acids to Hydrocarbons. Science 2017, 357 (6354), 903-907. https://doi.org/10.1126/science.aan6349.

[2] Bruder, S.; Moldenhauer, E.J.; Lemke, R.D.; Ledesma-Amaro, R.; Kabisch, J. Drop-in Biofuel Production Using Fatty Acid Photodecarboxylase from Chlorella Variabilis in the Oleaginous Yeast Yarrowia Lipolytica. Biotechnol. Biofuels 2019,12 (1), 202. https://doi.org/10.1186/s13068-019-1542-4.

[3] Huijbers, M.M.E.; Zhang, W.; Tonin, F.; Hollmann, F. Light-Driven Enzymatic Decarboxylation of Fatty Acids. Angew. Chem. Int. Ed. 2018, 57 (41), 13648-13651. https://doi.org/10.1002/anie.201807119.

[4] Lakavath, В.; Hedison, Т.M.; Heyes, D.J.; Shanmugam, M.; Sakuma, M.; Hoeven, R.; Tilakaratna, V.; Scrutton, N.S. Radical-Based Photoinactivation of Fatty Acid Photodecarboxylases. Anal. Biochem. 2020, 600, 113749. https://doi.org/10.1016/j.ab.2020.113749.

[5] Heyes, D.J.; Lakavath, В.; Hardman, S.J.O.; Sakuma, M.; Hedison, Т.M.; Scrutton, N.S. Photochemical Mechanism of Light-Driven Fatty Acid Photodecarboxylase. ACS Catal. 2020, 10 (12), 6691-6696. https://doi.org/10.1021/acscatal.0c01684.

[6] Mathes, Т.; Vogl, C; Stolz, J.; Hegemann, P. In Vivo Generation of Flavoproteins with Modified Cofactors. J. Mol. Biol. 2009, 385 (5), 1511-1518. https://doi.org/10.1016/j.jmb.2008.11.001.

[7] Mehlhorn, J.; Steinocher, H.; Beck, S.; Kennis, J.Т.M.; Hegemann, P.; Mathes, T. A Set of Engineered Escherichia Coli Expression Strains for Selective Isotope and Reactivity Labeling of Amino Acid Side Chains and Flavin Cofactors. PLoS ONE 2013, 8 (11), e79006. https://doi.org/10.1371/journal.pone.0079006.

Способ получения ферментов ФЖК, включающий конструирование плазмиды для рекомбинантной экспрессии ФЖК, трансформацию экспрессионного штамма данной плазмидой, культивирование трансформированных штаммов и очистку белка, отличающийся тем, что плазмида для рекомбинантной экспрессии ФЖК создается на основе экспрессионного вектора pET28a и кодирует ФЖК CvFAP из одноклеточной водоросли Chlorella variabilis, к концу которой добавлены 6х-гистидиновый таг, белок тиоредоксин и сайт распознавания цистеиновой протеазой TEV, и в качестве экспрессионного штамма используется штамм E.coli CmpX131(DE3), который использует бактериальный рибофлавиновый транспортер для импорта рибофлавина из среды и имеет систему дополнительной экспрессии флавокиназ-ферментов, катализирующих реакцию перехода рибофлавина в ФАД и ФМН.



 

Похожие патенты:

Изобретение относится к выделенному полинуклеотиду вируса гриппа A. Предложен выделенный полинуклеотид вируса гриппа A, кодирующий мутант PB2 полимеразы вируса гриппа A, причем мутант PB2 полимеразы содержит аминокислотную последовательность SEQ ID NO: 1 с замещением одной аминокислоты, выбранным из группы, состоящей из: Q306H, Q306L, F323S, F323Y, S324G, S324I, S324N, S324R, S337L, S337P, F363L, K376N, K376Q, K376R, F404Y, M431I, M431T, N510K и N510T.

Изобретение относится к области биотехнологии. Предложен рекомбинантный штамм Ogataea haglerorum ВКПМ Y-4639, являющийся продуцентом β-маннаназы и содержащий в составе хромосомы оптимизированную последовательность гена, кодирующего β-маннаназу ЕС 3.2.1.78 Bacillus subtilis.

Группа изобретений относится к биотехнологии, в частности к способам получения конъюгированных иммуноглобулинов с использованием микробной трансглутаминазы. Осуществляют инкубацию иммуноглобулина с микробной трансглутаминазой и терапевтическим или диагностическим агентом, содержащим ацил-донорный субстрат, включающий остаток глутамина, где трансглутаминаза катализирует конъюгацию K447 иммуноглобулина с остатком глутамина ацил-донорного субстрата.

Изобретение относится к области биотехнологии, конкретно к химерным белкам для индукции апоптоза клетки, и может быть использовано в клеточной терапии. Предложен химерный белок, который характеризуется определенной формулой и содержит первый домен гетеродимеризации, второй домен гетеродимеризации и домен каспазы, причем в присутствии химического индуктора димеризации (CID) пара идентичных химерных белков взаимодействует так, что первый домен гетеродимеризации одного химерного белка гетеродимеризуется со вторым доменом гетеродимеризации другого химерного белка, обуславливая гомодимеризацию и активацию двух доменов каспазы.

Группа изобретений относится к способу производства L-фукозы в свободной форме с использованием рекомбинантного микроорганизма и рекомбинантному микроорганизму для производства L-фукозы в свободной форме. Способ предусматривает культивирование рекомбинантного микроорганизма в среде, подходящей для роста микроорганизма, где этот микроорганизм не способен метаболизировать L-фукозу, так что L-фукоза накапливается во время стадии культивирования, и выделение свободной L-фукозы из среды.

Изобретение относится к области биохимии, в частности к способу получения антигенсвязывающих белков против представляющего интерес чужеродного антигена, предусматривающему получение генетически модифицированной крысы или мыши, у которой локус-мишень содержит биаллельную делецию всего или части гена, кодирующего аутоантиген.

Группа изобретений относится к биологии, химии и биотехнологии, а именно к биолюминесцентной системе червя Odontosyllis undecimdonta. Предложено соединение 4-гидрокси-5-(сульфоокси)-7Н-тиено[3,2-f]тиохромен-1,7,8-трикарбоновая кислота: или его таутомер - 4-гидрокси-5-(сульфоокси)-9Н-тиено[3,2-f]тиохромен-1,7,8-трикарбоновая кислота.

Изобретение относится к биотехнологии. Описан способ получения библиотеки для секвенирования, содержащей нуклеиновые кислоты из множества отдельных ядер или клеток, включающий: получение множества выделенных ядер или клеток в первичных множествах компартментов, где каждый компартмент содержит субпопуляцию выделенных ядер или клеток, и где ядра или клетки содержат фрагменты нуклеиновой кислоты; введение медиатора линейной амплификации в клетки или ядра; амплификацию фрагментов нуклеиновой кислоты путем линейной амплификации; обработку каждой субпопуляции ядер или клеток для получения индексированных ядер или клеток, где обработка включает добавление к фрагментам нуклеиновых кислот, присутствующих в изолированных ядрах или клетках, первой компартмент-специфической индексной последовательности для получения индексированных нуклеиновых кислот, присутствующих в выделенных ядрах или клетках, где обработка включает лигирование, удлинение праймера, гибридизацию, амплификацию или транспозицию; объединение индексированных ядер или клеток для получения объединенных индексированных ядер или клеток, тем самым получая библиотеку для секвенирования из множества ядер или клеток.

Настоящее изобретение относится к области биотехнологии, конкретно к рекомбинантному гормону роста человека (hGH), и может быть использовано в медицине. Изобретение позволяет получить гликозилированную форму соматотропина (hGH), модифицированного CTP-удлиняющими сегментами и обладающего увеличенным периодом полувыведения, а также повышенной стабильностью в сравнении с известными аналогами.

Изобретение относится к биотехнологии. Предложен полифункциональный композитный ферментный препарат для деградации фосфорорганических соединений, микотоксинов и молекул-регуляторов кворума бактериальных патогенов, включающий смесь ферментов протеазы, декарбоксилазы, целлобиогидролазы, карбоксипептидазы, гексагистидинсодержащей органофосфатгидролазы, лактоназы, стабилизированных в нековалентных комплексах с биологически активными низкомолекулярными (антимикробные агенты, гепатопротекторы, антиоксиданты) или высокомолекулярными (полиаминокислоты, полисахариды) веществами, взятыми в разном сочетании при эквимолярных соотношениях для сорбционной иммобилизации на диатомите, затем их высушивают до остаточной влажности 8-10%.
Изобретение относится к области биотехнологии. Предложен способ получения и очистки рекомбинантной фосфолипазы А2 Streptomyces violaceoruber из штамм-продуцента Pichia pastoris.
Наверх