Способ контроля технического состояния дизель-генератора при эксплуатации

Изобретение относится к технической диагностике, в частности к способам определения технического состояния объекта, преимущественно оборудования возвратно-поступательного действия, в том числе дизель-генераторов, и может быть использовано для контроля электроприводного оборудования и дизель-генераторов, перегрузочных машин, приводов систем управления и защиты ядерных энергетических установок, для диагностики, контроля параметров, обработки и представления результатов контроля, выдаче рекомендаций и указаний по проведению ремонта дизель-генераторных установок. Способ заключается в проведении измерений значений виброускорения в трех взаимно ортогональных плоскостях с помощью вибродатчиков, установленных в контрольных точках дизель-генератора, предварительно осуществляются первичные измерения значений виброускорения в контрольных точках заведомо исправного работающего дизель-генератора, а затем осуществляют последующие измерения значений виброускорения в контрольных точках дизель-генератора при его эксплуатации с регламентируемой периодичностью. При этом дополнительно осуществляют измерение значений температуры и интенсивности ультразвукового сигнала в этих же контрольных точках и определяют среднеквадратичные значения интенсивности ультразвукового сигнала, температуры и виброускорения, а также вычисляют по измеренным значениям виброускорения среднеквадратичные значения виброскорости и виброперемещения, полученные значения представляют в виде матриц. Далее осуществляют нормирование полученных среднеквадратичных значений, вычисление ковариационных матриц и их сингулярное разложение с получением собственных векторов и собственных значений, затем выполняют проецирование полученных данных на главные компоненты с формированием кластеров, соответствующих измерениям в каждой точке в пространстве главных компонент. После этого определяют нормативный интервал, сформированный как диапазон расстояния между кластерами предыдущих измерений, и делают вывод о полной исправности дизель-генератора при попадании более 50% кластеров текущих измерений в нормативный интервал или о наличии дефектов в работе дизель-генератора при попадании менее 50% кластеров текущих измерений в нормативный интервал или о неисправности дизель-генератора при попадании более 50% кластеров ниже границы нормативного интервала. Технический результат заключается в обеспечении возможности своевременного выявления отклонений в работе дизель-генератора путем проведения периодических измерений и сравнения полученных результатов вычислений между собой, и, как следствие, в обеспечении промышленной безопасности технологического оборудования установок. 5 з.п. ф-лы.

 

Изобретение относится к технической диагностике, в частности к способам определения технического состояния объекта, преимущественно оборудования возвратно-поступательного действия, в том числе дизель-генераторов, и может быть использовано для контроля электроприводного оборудования и дизель-генераторов, перегрузочных машин, приводов систем управления и защиты ядерных энергетических установок, для диагностики, контроля параметров, обработки и представления результатов контроля, выдаче рекомендаций и указаний по проведению ремонта дизель-генераторных установок.

Известны способы и устройства для использования данных о вибрациях для определения состояния устройства управления технологическим процессом (патент на изобретение РФ №2640387). В способе используют данные о вибрациях для определения состояния устройства управления технологическим процессом во время калибровки, при этом рассчитывают эксплуатационный порог устройства управления на основании первых данных о вибрациях, собирают данные об эксплуатации относительно устройства управления. Данные об эксплуатации указывают на ресурс, связанный с устройством управления. После этого на основании указанных данных об эксплуатации производят обновление эксплуатационного порога. Обновленный эксплуатационный порог указывает на уменьшение оставшегося ресурса, связанного с устройством управления. Затем собирают вторые данные о вибрациях от первого датчика после калибровки цепи вибрационного мониторинга и определяют состояние устройства управления технологическим процессом в том случае, если вторые данные о вибрациях превышают обновленный эксплуатационный порог. В известном изобретении решена задача управления любым технологическим процессом классической технологии на основе последовательности действий и методов передачи данных от датчика к приемнику также, как и в описанных аналогах известного способа.

Известный способ не позволяет провести вибродиагностику элементов дизель-генератора при его эксплуатации и оценить необходимость проведения технического обслуживания.

Наиболее близким аналогом к заявляемому техническому решению является способ контроля технического состояния судового дизель-генератора в эксплуатации (патент на изобретение РФ №2682839), включающий измерение и обработку вибросигнала в вертикальном, осевом и поперечном направлениях, значений виброускорения, виброскорости и виброперемещения с датчиков, установленных на корпусе турбокомпрессора, на элементах газовыпускной и впускной систем двигателя и коленчатого вала двигателя, на лапах двигателя, на корпусе подшипников генератора и на лапах генератора, на опорах и фундаменте дизель-генератора, последующее преобразование измеренного сигнала в узкополосные спектры виброускорения, виброскорости, виброперемещения и определение места превышения параметров вибрации установленных пределов эксплуатационных уровней.

Недостатком ближайшего аналога является отсутствие возможности оценки состояния дизель-генератора путем определения тенденции изменения контролируемых параметров.

Задачей, достигаемой предлагаемым изобретением является определение технического состояния дизель-генератора для анализа возможности его дальнейшей эксплуатации без прохождения ремонта, а также повышение эффективности обнаружения неисправности дизель-генераторных установок на ранней стадии возникновения за счет совместного анализа диагностических данных разной природы с учетом ранее зарегистрированных данных оборудования данного типа.

Технический результат, достигаемый настоящим изобретением, заключается в обеспечении возможности своевременного выявления отклонений в работе дизель-генератора путем проведения периодических измерений и сравнения полученных результатов вычислений между собой, и, как следствие, в обеспечении промышленной безопасности технологического оборудования установок.

Сущность изобретения состоит в том, что в способе контроля технического состояния дизель-генератора при эксплуатации, заключающемся в проведении измерений значений виброускорения в трех взаимно ортогональных плоскостях с помощью вибродатчиков, установленных в контрольных точках дизель-генератора, предложено предварительно осуществлять первичные измерения значений виброускорения в контрольных точках заведомо исправного работающего дизель-генератора, а затем осуществлять последующие измерения значений виброускорения в контрольных точках дизель-генератора при его эксплуатации с регламентируемой периодичностью, при этом дополнительно осуществлять измерение значений температуры и интенсивности ультразвукового сигнала в этих же контрольных точках и определять среднеквадратичные значения интенсивности ультразвукового сигнала, температуры и виброускорения, а также вычислять по измеренным значениям виброускорения среднеквадратичные значения виброскорости и виброперемещения, полученные значения представлять в виде матриц, далее осуществлять нормирование полученных среднеквадратичных значений, вычисление ковариационных матриц и их сингулярное разложение с получением собственных векторов и собственных значений, затем выполнять проецирование полученных данных на главные компоненты с формированием кластеров, соответствующих измерениям в каждой точке в пространстве главных компонент, после чего определять нормативный интервал, сформированный как диапазон расстояния между кластерами предыдущих измерений, и делать вывод о полной исправности дизель-генератора при попадании более 50% кластеров текущих измерений в нормативный интервал или о наличии дефектов в работе дизель-генератора при попадании менее 50% кластеров текущих измерений в нормативный интервал или о неисправности дизель-генератора при попадании более 50% кластеров ниже границы нормативного интервала.

Также предлагается контрольные точки дизель-генератора для установки вибродатчиков выбирать на опорах и точках крепления дизеля, корпусе дизеля и в местах, близких к расположению опор дизеля, турбокомпрессоров, водяных и масляных насосов, а также на опорах и опорной раме генератора и его подшипниковых узлах.

Дополнительные контрольные точки для измерения значений интенсивности ультразвукового сигнала предлагается преимущественно выбирать на цилиндрах и их топливных насосах высокого давления, анкерных связях рамовых подшипников, подшипниках скольжения распределительного вала, генераторе, водяном и масляном насосах.

Дополнительные контрольные точки для измерения значений температуры предлагается выбирать на подшипнике генератора, выхлопных патрубках цилиндров, топливных насосах высокого давления, смотровых люках, корпусах водяного насоса охлаждения дизеля, водяного насоса охлаждения наддувочного воздуха, масляного насоса и генератора.

Также предлагается температуру измерять с помощью тепловизора, а измерения значений виброускорения, температуры и интенсивности ультразвукового сигнала осуществлять с периодичностью один раз в 3 месяца.

Предлагаемый способ осуществляется следующим образом.

Первоначально осуществляют первичные измерения заведомо исправного работающего дизель-генератора значений виброускорения в трех взаимно ортогональных плоскостях с помощью вибродатчиков, а также измерение значений температуры и интенсивности ультразвукового сигнала. Результаты этих измерений должны быть зафиксированы, поскольку с ними будут сравнивать полученные далее результаты измерений.

На дизель-генератор устанавливают вибродатчики в контрольных точках дизель-генератора, например, на опорах и точках крепления дизеля, корпусе дизеля и в местах, близких к расположению опор дизеля, турбокомпрессоров, водяных и масляных насосов, а также на опорах и опорной раме генератора и его подшипниковых узлах. В качестве беспроводных трехкоординатных датчиков могут быть использованы, например, датчики типа «VS-3D». При установке датчиков следует убедиться в наличии сигнала и произвести запись в течение не менее одной секунды.

Предлагаемый способ предусматривает также контроль навесного оборудования: турбокомпрессоров, водяных и масляных насосов в местах на корпусе, близких к расположению подшипников.

Рядное исполнение дизелей подразумевает расположение цилиндров в один (15Д-100, АС-803 и АС-808) или два (АСД-5600, ДГ-4000) ряда. Подшипники верхнего и нижнего коленчатых валов возможно контролировать на корпусе двигателя в районе расположения коренных подшипников по правому и левому бортам. При диагностировании возможен непосредственный контроль топливного насоса высокого давления, форсунок и цилиндров через смотровые окна.

Генераторы, входящие в состав ДГУ, представляют собой синхронные машины, состоящие из неподвижного статора и вращающегося на подшипниках скольжения ротора. Как и во всех синхронных машинах, ротор представляет собой электромагнит, питающийся постоянным током через щеточно-коллекторный аппарат. Исправность электрической машины определяется в первую очередь состоянием обмоток статора и подшипников. При эксплуатации синхронных машин зачастую возникают сложности с щеточно-коллекторным питанием ротора, которое необходимо также контролировать.

Вибрационный контроль предназначен для обобщенной проверки оборудования с точки зрения возможности его эксплуатации. Вибрационный контроль уровня вибрации в контрольных точках с последующим сравнением параметров вибрации с их нормативными значениями, определенными для машин данной конструкции, позволяет сделать вывод о возможности дальнейшей эксплуатации установки. Сигнал вибрации чувствителен не только к локальным колебательным процессам в контролируемом оборудовании, но и ко всем процессам в оборудовании (обобщенный показатель).

Проведение температурного контроля дизеля позволяет вовремя выявить дефекты элементов топливной аппаратуры, которые не обеспечивают необходимый рабочий процесс дизеля. Контроль дает возможность оперативно восстановить необходимые мощностные, экономические и экологические характеристики дизеля. Кроме того, оперативный контроль элементов топливной аппаратуры позволяет оценить качество ремонта и, в случае необходимости, принять соответствующие меры для улучшения технического состояния дизеля. Контроль температуры выпускных патрубков цилиндров или температуры выхлопных газов, температуры рабочих сред, максимальное давление сгорания в каждом цилиндре характеризуют равномерность работы цилиндров и эффективность работы дизеля в целом. Контроль температурного состояния остова дизеля и его основных агрегатов позволяет выявить места с резко выраженным изменением температурного поля, что, очевидно, является следствием повышенного сопротивления (трения) в сопрягаемых узлах и деталях дизеля.

Температуру измеряют с помощью тепловизора, например, Testo 890-2, путем наведения на области установки подшипников генератора, выхлопных патрубках цилиндров, топливных насосах высокого давления, смотровых люках, корпусах водяного насоса охлаждения дизеля, водяного насоса охлаждения наддувочного воздуха, масляного насоса и генератора, последующей автоматической или ручной фокусировки и сохранения термографического изображения в памяти прибора. Тепловизионный контроль подшипников коленчатого вала V-образных и рядных дизелей достаточно контролировать по температуре смотровых лючков, омываемых маслом, поступающим для смазки подшипников коленчатого вала.

Интенсивность ультразвукового сигнала осуществляют путем проведения измерений на цилиндрах и их топливных насосах высокого давления, анкерных связях рамовых подшипников, подшипниках скольжения распределительного вала, генераторе, водяном и масляном насосах. Регистрацию осуществляют путем установки контактного щупа ультразвукового прибора SDT-270 в контрольных точках.

В дизелях с V-образным расположением цилиндров (ДГУ типа 12ZV40/48+S2445-12, ЗВЕЗДА-6000ВС-MTU) все вибрации, возникающие в кривошипно-шатунном механизме, воспринимаются корпусом двигателя. Коленчатый вал уложен в крышках рамовых подшипников, крепящихся к корпусу двигателя при помощи шпилек, а для увеличения жесткости нижней части корпуса двигателя в плоскости каждого рамового подшипника расположены поперечные анкерные связи. По левому и правому бортам корпуса двигателя расположены кулачковые валы газораспределительного механизма. Ультразвуковой контроль подшипников коленчатого вала можно проводить с одного борта, что удобно сделать через анкерные связи, воспринимающие нагрузки рамовых подшипников коленчатого вала. Ультразвуковые параметры подшипников распределительного вала по левому и правому борту возможно контролировать только на корпусе (остове) двигателя. Конструкция V-образных дизелей допускает ультразвуковой контроль каждого топливного насоса высокого давления и цилиндровых втулок, расположенных по левому и правому борту.

После проведения первичных измерений осуществляют последующие измерения значений виброускорения, температуры и интенсивности ультразвукового сигнала в этих же контрольных точках дизель-генератора при его эксплуатации с периодичностью, которая определяется регламентом эксплуатирующей организации, например, один раз в три месяца.

Время регистрации вибрации в каждом месте контроля определяется номинальной частотой вращения вала дизеля. За время регистрации для достоверного контроля элемента конструкции число оборотов должно быть не менее 10. Рекомендуемое время регистрации - 1 секунда.

Контроль проводится в период работы оборудования на номинальной мощности. Одновременная регистрация двух или трех видов параметров технического состояния, соответствующих типовым группам оборудования, позволяет проводить комплексную оценку путем представления данных в n-мерной области, вычисления центров кластеров данных и расстояния между центрами. Величина расстояния между выборками данных, зарегистрированных в разное время, является комплексным показателем изменения состояния оборудования.

После проведения вышеуказанных измерений вычисляют среднеквадратичные значения интенсивности ультразвукового сигнала, температуры и виброускорения. Затем вычисляют по измеренным значениям виброускорения среднеквадратичные значения виброскорости и виброперемещения.

Полученные значения представляют в виде матриц, например:

где - среднеквадратичные значения и максимальные значения виброскоростей в трех взаимно ортогональных плоскостях, зарегистрированных несколько раз в одних и тех же точках оборудования, где К - число замеров, L - число точек.

В виде таких же матриц представляют значения температур и интенсивности ультразвукового сигнала.

Далее производят нормирование параметров (так, чтобы матожидание элементов в каждом столбце соответствовало нулю, а дисперсия единице) и вычисляют ковариационные матрицы:

Ковариационную матрицу подвергают разложению с помощью сингулярной декомпозиции с получением собственных векторов и собственных значений

CAUnnUn,

где Un - собственные векторы (направления наибольшей дисперсии); λn - собственное значение (дисперсионная доля параметра в направлении соответствующего вектора).

Затем выполняют проецирование полученных данных на главные компоненты с формированием кластеров, соответствующих измерениям в каждой точке в пространстве главных компонент. После этого определяют нормативный интервал, сформированный как диапазон расстояния между кластерами предыдущих измерений, и делают вывод о полной исправности дизель-генератора при попадании более 50% кластеров текущих измерений в нормативный интервал или о наличии дефектов в работе дизель-генератора при попадании менее 50% кластеров текущих измерений в нормативный интервал, или о неисправности дизель-генератора при попадании более 50% кластеров ниже границы нормативного интервала.

Описанный способ был использован при диагностике дизель-генераторных установок типа 15Д-100, 12ZV40/48+S2445-12, ЗВЕЗДА-6000ВС-MTU, эксплуатируемых на Нововоронежской, Смоленской, Ростовской АЭС, и может быть использован при диагностике дизель-генераторных установок типа АСД-5600, ДГ-4000, АС-803 и АС-808, эксплуатируемых на других АЭС.

Использование предлагаемого способа позволяет определять техническое состояние-дизель генератора, оперативно и своевременно выявлять отклонения в его работе.

1. Способ контроля технического состояния дизель-генератора при эксплуатации, заключающийся в проведении измерений значений виброускорения в трех взаимно ортогональных плоскостях с помощью вибродатчиков, установленных в контрольных точках дизель-генератора, отличающийся тем, что предварительно осуществляют первичные измерения значений виброускорения в контрольных точках заведомо исправного работающего дизель-генератора, а затем осуществляют последующие измерения значений виброускорения в контрольных точках дизель-генератора при его эксплуатации с регламентируемой периодичностью, при этом дополнительно осуществляют измерение значений температуры и интенсивности ультразвукового сигнала в этих же контрольных точках и определяют среднеквадратичные значения интенсивности ультразвукового сигнала, температуры и виброускорения, а также вычисляют по измеренным значениям виброускорения среднеквадратичные значения виброскорости и виброперемещения, полученные значения представляют в виде матриц, далее осуществляют нормирование полученных среднеквадратичных значений, вычисление ковариационных матриц и их сингулярное разложение с получением собственных векторов и собственных значений, затем выполняют проецирование полученных данных на главные компоненты с формированием кластеров, соответствующих измерениям в каждой точке в пространстве главных компонент, после чего определяют нормативный интервал, сформированный как диапазон расстояния между кластерами предыдущих измерений, и делают вывод о полной исправности дизель-генератора при попадании более 50% кластеров текущих измерений в нормативный интервал или о наличии дефектов в работе дизель-генератора при попадании менее 50% кластеров текущих измерений в нормативный интервал, или о неисправности дизель-генератора при попадании более 50% кластеров ниже границы нормативного интервала.

2. Способ контроля технического состояния дизель-генератора по п. 1, отличающийся тем, что контрольные точки дизель-генератора для установки вибродатчиков выбирают на опорах и точках крепления дизеля, корпусе дизеля и в местах, близких к расположению опор дизеля, турбокомпрессоров, водяных и масляных насосов, а также на опорах и опорной раме генератора и его подшипниковых узлах.

3. Способ контроля технического состояния дизель-генератора по п. 1, отличающийся тем, что дополнительные контрольные точки для измерения значений интенсивности ультразвукового сигнала выбирают на цилиндрах и их топливных насосах высокого давления, анкерных связях рамовых подшипников, подшипниках скольжения распределительного вала, генераторе, водяном и масляном насосах.

4. Способ контроля технического состояния дизель-генератора по п. 1, отличающийся тем, что дополнительные контрольные точки для измерения значений температуры выбирают на подшипнике генератора, выхлопных патрубках цилиндров, топливных насосах высокого давления, смотровых люках, корпусах водяного насоса охлаждения дизеля, водяного насоса охлаждения надувочного воздуха, масляного насоса и генератора.

5. Способ контроля технического состояния дизель-генератора по п. 1, отличающийся тем, что температуру измеряют с помощью тепловизора.

6. Способ контроля технического состояния дизель-генератора по п. 1, отличающийся тем, что измерения значений виброускорения, температуры и интенсивности ультразвукового сигнала осуществляют с периодичностью один раз в 3 месяца.



 

Похожие патенты:

Изобретение относится к двигателестроению, в частности к испытаниям элементов и узлов топливной аппаратуры дизеля и предназначено для испытания плунжерных пар и нагнетательных клапанов автотракторных двигателей непосредственно на насосе. Устройство укомплектовано топливопроводом высокого давления спиральной формы и длиной, равной длине топливопровода высокого давления испытуемого насоса, что позволяет повысить точность результатов испытаний.

Изобретение относится к измерительной технике, а конкретнее к испытаниям машин и двигателей, в частности синхронных, параллельных турбокомпрессоров. Техническим результатом является сокращение времени, необходимого для определения диагностических параметров турбокомпрессоров.

Изобретение относится к области жидкостных ракетных двигателей (ЖРД). Технический результат заключается в повышении достоверности оценки параметров ЖРД во время огневых испытаний.

Изобретение относится к испытаниям стрелочных переводов. Стенд для испытания электроприводов стрелочных переводов содержит панель управления и индикации, подключенную к контроллеру, персональный компьютер, гидравлическое устройство нагрузки, механически соединяемое с испытываемым электроприводом.

Изобретение относится к транспортному машиностроению и двигателестроению авиационного назначения и применимо при наземных испытаниях форсажной камеры сгорания на стендах и аэродромах. Задачи изобретения: повышение точности подтверждения и уменьшение времени испытаний на длительный ресурс работы в наземных условиях путем увеличения нагрузки на форсажную камеру сгорания выше эксплуатационных значений.

Использование: для диагностики промышленного объекта на основе анализа акустических сигналов. Сущность изобретения заключается в том, что система для диагностики промышленного объекта на основе анализа акустических сигналов содержит по меньше мере один микрофон, выполненный с возможностью приема акустических сигналов от промышленного объекта, компьютер, выполненный с возможностью формирования файла с принятыми от по меньшей мере одного микрофона акустическими сигналами, валидации и пересылки файла в базу данных, базу данных, выполненную с возможностью сохранения упомянутых файлов и дополнения их данными о, по меньшей мере, связи акустических сигналов и промышленного объекта, времени, месте, условиях приема акустических сигналов, модуль определения аномальности файла, выполненный с возможностью принятия решения о нормальной или аномальной работе промышленного объекта на основании заранее заданной обучающей выборки из данных о нормальной работе промышленного объекта, модуль принятия решения, выполненный с возможностью принимать решение о наличии или отсутствии аномалий на основании дополнительной корректировки в условиях повышенных шумов, модуль углубленного анализа аномалий, выполненный с возможностью выявления причины аномалий в промышленном объекте на основании акустических сигналов с использованием эвристических зависимостей.

Изобретение относится к области авиационного и ракетного двигателестроения и может быть использовано при исследовании рабочих процессов в прямоточных воздушно-реактивных и гибридных ракетных двигателях в условиях стендовых испытаний. Способ заключается в измерении толщины сгоревшего свода цилиндрического канального заряда твердого топлива, размещенного в камере сгорания с сопловым блоком, при подаче нагретого газа с заданными значениями температуры и плотности потока окислителя.

Стенд для испытаний топливных коллекторов относится к области испытаний топливовпрыскивающей аппаратуры, а именно к стендам для испытаний топливных коллекторов авиационных газотурбинных двигателей (ГТД). Изобретение позволяет повысить технологическую точность измерения расхода топлива через топливный коллектор, уменьшить время проведения гидроиспытаний топливных коллекторов, исключить человеческий фактор при замере времени расхода топлива через каждую форсунку и автоматизировать процесс обработки.

Изобретение относится к области реактивной техники, в частности к области диагностирования, ремонта, приемки и поставки газотурбинных двигателей для воздушных судов и энергетических установок, работающих на жидком и газообразном топливах. Предложенный способ испытаний авиационного газотурбинного двигателя в стендовых условиях при проведении предъявительских, приемо-сдаточных, ресурсных и специальных испытаний включает измерения параметров работы двигателя на различных режимах в пределах диапазона полетных режимов двигателя, приведение полученных параметров к стандартным атмосферным условиям с учетом поддержания заданных законов регулирования и изменения свойств теплоемкости рабочего тела и геометрии проточной части при испытаниях двигателя в атмосферных условиях, не соответствующих стандартным.

Изобретение предназначено для использования в турбомашиностроении и может найти широкое применение для снижения вибронапряжений в лопатках рабочих колес турбомашин. Проводят тензометрирование лопаток отдельного рабочего колеса турбомашины.

Изобретение относится к области технической диагностики, в частности к способам диагностики технического состояния электроприводного оборудования, и может быть использовано для мониторинга вибраций роторного оборудования атомных станций. Технический результат, достигаемый настоящим изобретением, заключается в снижении погрешности измерений и анализа диагностических сигналов. Сущность изобретения состоит в том, что в способе диагностики технического состояния роторного оборудования, заключающемся в определении и оценке механических вибраций оборудования, предложено предварительно измерять и записывать за контрольный промежуток времени величину эталонного диагностического сигнала заведомо исправного оборудования того же типа, что и проверяемое роторное оборудование, а затем за контрольный промежуток времени измерять и записывать диагностические сигналы в процессе работы проверяемого оборудования, после чего разбивать произведенные записи эталонного сигнала и сигнала проверяемого оборудования на не менее чем пять участков продолжительностью не менее двух секунд, каждый участок записи эталонного и проверяемого сигналов преобразовывать в спектр, представляющий собой распределение амплитуд по частотам, осуществлять выборку амплитуд спектров диагностических сигналов проверяемого и исправного оборудования на частотах проявления отклонений проверяемого и эталонного сигналов, а затем вычислять модули разности амплитуд спектров проверяемого и исправного оборудования и осуществлять ранжирование модулей разности и суммирование полученных рангов, а сумму полученных рангов сравнивать с критическим значением, после чего делать вывод о превышении роторным оборудованием регламентированных значений вибрации и, как следствие, его неисправности в случае, если сумма полученных рангов превышает критическое значение, или об исправности оборудования электродвигателя, если сумма полученных рангов меньше критического значения. 2 з.п. ф-лы, 2 ил.
Наверх