Новое устройство распределения многофазной смеси в камере, содержащей псевдоожиженную среду

Изобретение относится к улучшению конструкций распределителей, предназначенных для распределения легкой фазы в тяжелой фазе. Изобретение относится к устройству распределения легкой фазы внутри тяжелой фазы в реакционной камере (5), где указанная тяжелая фаза присутствует в псевдоожиженном состоянии, при этом устройство включает трубопровод (1) для подвода легкой фазы, указанный трубопровод (1) является цилиндрическим и открытым в верхней части благодаря первым и вторым прямоугольным окнам (7, 8), расположенным в боковой стенке указанного трубопровода (1), при этом вторые окна (8) продолжаются ветвями (6), перпендикулярными оси симметрии реакционной камеры (5), при этом над верхней частью трубопровода (1) находится выпуклая головка (9). Технический результат – повышение эффективности реактора за счет того, что легкая фаза равномерно распределена и более эффективно взаимодействует с плотной фазой. 4 н. и 8 з.п. ф-лы, 4 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к улучшению конструкции распределителей, предназначенных для распределения легкой фазы в тяжелой фазе. Вообще, легкая фаза представляет собой газовую фазу, тяжелая фаза представляет собой жидкую фазу, однако в более общем смысле, в контексте псевдоожиженного слоя, легкая фаза представляет собой газовую фазу, фазу газ–твердое или жидкую фазу, а тяжелая фаза представляет собой, собственно, псевдоожиженный слой, т.е., эмульсию твердых частиц в газе или жидкости.

В том случае, когда в реакторе имеется псевдоожиженный слой, содержащий твердую фазу (каталитическую или некаталитическую), поддерживаемую взвешенной в псевдоожиженном состоянии путем пропускания газообразной или жидкой текучей среды, смеси газа и жидкости или псевдо–текучей среды, состоящей из газа или жидкости, содержащей взвешенные частицы, распределение имеет существенное значение для поддержания псевдоожиженного состояния твердой фазы в реакторе.

Следовательно, важно обеспечить хорошое распределение текучих фаз на входе в реактор.

В 6 главе книги «Handbook of Fluidization and Fluid–Particle Systems» (Руководство по созданию псевдоожиженного слоя и текучим системам» (ed. Yang 2003) приведены примеры различных типов распределителей, используемых в многофазных системах.

Например, в патенте US4760779 описан распределитель типа пластины с отверстиями, используемый для подачи материалов в псевдоожиженные слои. В документах US2841476 и US3672577 приведены примеры распределителей, снабженных защитными колпаками, установленными над каждым отверстием, для предотвращения обратного движения твердой фазы и для разбиения струи.

Предметом настоящего изобретения является описание системы, позволяющей распределять легкую текучую фазу в реакционной камере, содержащей текучую фазу или твердую псевдоожиженную фазу, отличающуюся большей плотностью, чем подлежащая распределению легкая фаза. Эта система позволяет не только уменьшить скорость при ведении легкой фазы, но и равномерно распределить легкую фазу по всему сечению реактора. Более конкретно, система согласно изобретению образована каналом, позволяющим премещать легкую текучую фазу в реактор. На конце этого канала расположены дефлекторы, предназначенные для распределения легкой текучей фазы по разным радиальным участкам реактора.

В частности, изобретение применимо для распределения легкой фазы (газа или фазы газ–жидкость) в реакторе с псевдоожиженным кипящим трехфазным слоем, в котором катализатор ожижают смесью реакционноспособных текучих сред, образованных газом и жидкостью.

Изобретение может быть использовано для распределения легкой фазы в жидкости по потоку выше распределителя, образованного системой с перфорированной пластиной. Особенно хорошо изобретение применимо, когда легкая текучая среда представляет собой водород, тяжелая текучая среда представляет собой нефтяные остатки, реактор с псевдоожиженным трехфазным слоем является реактором гидроконверсии в кипящем слое.

Изобретение может быть использовано для распределения фазы газ–твердое или газ–жидкость с высокой температурой в реакторе с псевдоожиженным слоем. Это относится к случаю поэтапной регенерации катализатора в процессе каталитического крекинга R2R, где катализатор на первом этапе подвергают сжиганию в псевдоожиженном слое, и на втором этапе – регенерации, также в псевдоожиженном слое, при этом, катализатор должен быть распределен в псевдоожиженном слое гомогенно по всему сечению второго этапа регенерации для облегчения реакций горения и сокращения перепада температур.

В более общем смысле, устройство, соответствующее изобретению, может быть использовано, помимо прочего, в следующих реакторах:

– реакторы FCC (fluid catalytic cracking – каталитический крекинг в псевдоожиженном слое),

– реакторы регенерации катализатора, например, каталитического крекинга,

– реакторы, в которых имеется псевдоожиженный слой катализатора,

– реакторы гидроочистки или гидрокрекинга с восходящим потоком, в которых подача двухфазного потока газ–жидкость или газ–твердое осуществляется снизу реакционной камеры,

– реакторы суспензионного типа,

– отпарные аппараты, сушильные аппараты, увлажнительные аппараты,

– реакторы каталитического пиролиза.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 представляет собой вид сбоку устройства распределения многофазного потока, соответствующего изобретению. На нем показаны окна (7) и (8), головка (9) и подводящий канал (2).

На фиг. 2а более подробно показан вид сбоку распределителя с указанием, в частности, размеров Е, F и Н.

На фиг. 2b представлен вид распределителя снизу, на котором можно видеть ветви (6), отходящие от окон (8), а также выемки (10).

Фиг. 2с представляет собой вид снизу соответствующего изобретению распределителя, позволяющий понять, как расположены ветви (6), а также чередование окон (7) и (8). На этой фигуре проставлены размеры А, В, С, D.

Фиг. 2d представляет собой вид распределителя сбоку, на котором показана высота К окон (8) и высота L ветвей (6).

На фиг. 3 представлен результат 3D моделирования, позволяющий проследить распространение текучей среды, поданной в камеру при помощи распределителя известного уровня техники.

На фиг. 4 представлен результат 3D моделирования, позволяющий проследить распространение текучей среды, поданной в камеру (5) при помощи распределителя, соответствующего настоящему изобретению.

Фиг. 3 и 4 предназначены для пояснения сравнительного примера, приведенного в конце описания.

УРОВЕНЬ ТЕХНИКИ

Известный уровень техники в области распределителей многофазной среды достаточно богат, и в качестве наиболее родственных примем во внимание следующие два документа известного уровня техники:

– патент US 5571482, в котором описано регулирование температуры в регенераторе FCC при помощи теплообменного устройства с псевдоожиженным слоем, именуемого «cat cooler» (охладитель катализатора). В этом патенте кратко упомянут (столбец 6/строка 40) распределитель типа «шампиньон», расположенный в регенераторе на высоте подъемной трубы, без уточнения его размеров.

– в патенте FR 3006607 описан распределитель типа «шампиньон», применимый в способах H–oil и FCC. В этом патенте заявлено распределение легкой фазы в тяжелой фазе (газа в жидкости или газа в псевдоожиженном слое), в котором найдено средство задания направления подлежащей вводу текучей среды, крышка (5), имеющая основной корпус (6) в форме колокола, и отклоняющее устройство (14), предназначенное для направления текучей среды к периферии крышки (5). Точно указаны размеры основных элементов. Соответствующее настоящему изобретению устройство позволяет существенно улучшить распределение легкой фазы в реакторе по сравнению с устройством, описанным в FR 3006607.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение можно определить как устройство распределения легкой фазы внутри тяжелой фазы в реакционной камере (5), где указанная тяжелая фаза присутствует в псевдоожиженном состоянии.

Легкая фаза может представлять собой газ, суспензию газ–твердое или жидкость, тяжелая псевдоожиженная фаза – эмульсию газ–твердое или даже трехфазную среду газ–твердое–жидкость, как имеет место в способах гидроочистки нефтяных фракций.

Устройство, соответствующее изобретению, включает трубопровод (1) для подвода легкой фазы, входящий внутрь реакционной камеры (5) в ее нижней части, при этом, указанный трубопровод (1) является цилиндрическим, по существу, центрированным по оси симметрии реакционной камеры (5) и открытым в верхней части благодаря первым и вторым прямоугольным окнам (7, 8), расположенным в боковой стенке указанного трубопровода (1).

Окна (7) открываются непосредственно в псевдоожиженную среду реакционной камеры (5), тогда как вторые окна (8) продолжаются ветвями (6), перпендикулярными оси симметрии камеры (5) и позволяющими достичь периферии камеры (5).

Над верхней частью трубопровода (1) находится выпуклая головка (9), в которой имеются выемки (10), равномерно распределенные вдоль ее нижнего края, при этом, ветви (6) выступают за периметр указанной головки (9). Первые прямоугольные окна (7) имеют ширину В и высоту J, то есть, проходное сечение B*J, вторые прямоугольные окна (8) имеют ширину А и высоту К, то есть, проходное сечение А*К, определяемые таким образом, чтобы скорость v легкой фазы при прохождении первых и вторых окон составляла от 0,3V до 20V, предпочтительно, составляла от 0,5V до 10V, где V означает скорость указанной легкой фазы в трубопроводе (1). Скорость V составляет от 1 м/с до 100 м/с, предпочтительно, от 3 м/с до 30 м/с.

Диаметр I головки (9), вообще, составляет от 0,05G до 0,95G, предпочтительно, от 0,2G до 0,8G, еще более предпочтительно, от 0,25G до 0,75G, где G означает внутренний диаметр реакционной камеры (5).

Длина D ветвей (6), измеренная от центра О устройства, совпадающего с осью симметрии реакционной камеры (5), до выходного конца, составляет от 0,55I до 0,48G, и высота L ветвей (6) у выходного конца составляет от 1 до 10К.

Выемки (10), вообще имеют треугольную или прямоугольную форму; когда выемки (10) прямоугольные, их ширина составляет от 0,01F до 0,9F, и их высота составляет от 0,01F до 0,9F; когда выемки (10) треугольные, высота треугольника составляет от 0,01F до 0,9F, и основание треугольника равно от 0,01F до 0,9F.

Головка (9), вообще, снабжена отверстиями (11) на своде, при этом, указанные отверстия (11) имеют диаметр от 1 до 100 мм, предпочтительно, от 10 до 50 мм.

В контексте способа каталитического крекинга с двузонной регенерацией соответствующее изобретению устройство может быть использовано для перемещения катализатора из первой зоны регенерации во вторую зону регенерации в псевдоожиженный турбулентный слой.

В контексте способа обработки биомассы соответствующее изобретению устройство может быть использовано для подачи газовой фазы или суспензии газ–твердое в псевдоожиженную среду, находящуюся в реакторе обработки биомассы.

В контексте способа гидроочистки тяжелых нефтяных фракций соответствующее изобретению устройство может быть использовано для подачи водорода в псевдоожиженную среду, содержащую частицы катализатора и тяжелую углеводородную фазу, подлежащую обработке.

В более общем смысле, устройство распределения, соответствующее изобретению, может быть использовано в реакторах:

– реакторы каталитического крекинга в псевдоожиженном слое (fluid catalytic cracking – FCC),

– реакторы регенерации катализатора, например, каталитического крекинга (FCC),

– реакторы, в которых имеется псевдоожиженный слой катализатора,

– реакторы гидроочистки или гидрокрекинга с восходящим потоком, в которых подача двухфазного потока газ–жидкость или газ–твердое осуществляется снизу реакционной камеры,

– реакторы суспензионного типа,

– отпарные аппараты, сушильные аппараты, увлажнительные аппараты,

– реакторы каталитического пиролиза.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к устройству распределения однофазной или двухфазной текучей среды в однофазной или многофазной псевдоожиженной среде с большей кажущейся плотностью, чем у подлежащей распределению текучей среды. Фаза легкой текучей среды, будь то газ, жидкость, суспензия газ–твердое или газ–жидкость, суспензия жидкость–твердое, отличается тем, что объемная масса суспензии меньше объемной массы в реакционной камере. Далее в тексте для краткости говорится о легкой фазе, подлежащей распределению.

На прилагаемой фиг. 1 представлена конструкция устройства, соответствующего изобретению. Речь идет о камере (5), которая может представлять собой, например, камеру реактора или регенератора, оборудованную устройством распределения.

Трубопровод (1) позволяет вводить легкую фазу 2 в реакционную камеру (5), в которой находится тяжелая фаза 4.

Трубопровод (1), предпочтительно, является вертикальным, если подводимый по нему поток многофазный. Предпочтительно, конечная часть трубопровода 1 расположена соосно с реакционной камерой (5).

Подача текучей среды 2 в камеру (5) осуществляется посредством распределителя (3), показанного на фиг. 1 схематично, а на фиг. 2 – более подробно. Устройство распределения (3) расположено на верхнем конце трубопровода (1). Текучую среду 2 подают в камеру 5 через окна двух типов (7) и (8):

– окна типа 7 имеют ширину В и высоту J,

– окна типа 8 имеют ширину А и высоту К.

Окна типа 8 соединены с ветвями 6, имеющими длину D и ширину на конце С.

Насадка, образованная головкой (9), расположена на вершине канала (1) и предназначена для улучшения распределения текучей среды 2, подаваемой через окна (7) в центральную часть камеры (5), при прохождении через отверстия (11), расположенные на вершине головки (9), или через выемки (10), расположенные в боковых стенках головки.

Для того, чтобы текучая среда 2 могла достичь периферической части, расположенной вокруг головки (9), ветви (6), проем которых соответствует окнам (8), образуют каналы для текучей среды, проходящей через окна (8). Ветви (6) распределяют текучую среду 2 в кольцевой зоне посредством выходных концов, имеющих ширину С.

Текучая среда 2 в трубопроводе 1 имеет скорость, обозначенную V.

В случае газа скорость V составляет от 1 до 100 м/с, предпочтительно, от 3 до 30 м/с.

В случае суспензии газ–твердое скорость газа составляет от 3 до 30 м/с, предпочтительно, от 6 до 25 м/с, поток транспортируемой твердой фазы составляет от 5 до 1000 кг/с/м2, предпочтительно, от 50 до 600 кг/с/м2.

Общее число окон (7) и (8), предпочтительно, четное и составляет от 2 до 48, предпочтительно, от 4 до 24, более предпочтительно, от 8 до 12.

Окна (8) соединены с ветвями (6). Число окон типа (8) может составлять от 10% до 80% общего числа окон, предпочтительно, от 40% до 60% общего числа окон, предпочтительно, 50% общего числа окон.

Размеры окон типа 7 (В, J) и типа 8 (А, К) выбирают так, чтобы скорость текучей среды 2 в окнах составляла от 0,3V до 20V, предпочтительно, от 0,5V до 10V, предпочтительно, была равна V.

Предпочтительно, число окон типа (7) равно числу окон типа (8), и окна равномерно чередуются по периферии трубопровода 1.

Размеры окон типа 7 (B, J) могут отличаться от размеров окон типа 8 (А, К). Площади окон типа (7) и типа (8) пропорциональны требуемому объемному разделению текучей среды 2 между этими двумя типами окон. Так, если головка (9) покрывает половину проходного сечения реактора (5), расход через окна типа (7) в часть, покрытую головкой (9), будет равен расходу через окна (8) и ветви (6) в периферическую часть. При одинаковом числе окон (7) и (8) возможно, чтобы оба типа окон имели одинаковые размеры.

Диаметр I головки (9) составляет от 0,05G до 0,95G, предпочтительно, от 0,2G до 0,8G, предпочтительно, от 0,65G до 0,75G. Конструкция отверстий (11), выемок (10) и высота головки (9) соответствуют приведенным в документе FR 3006607.

Верхняя стенка ветвей (6), предпочтительно, горизонтальна. Нижняя часть ветвей (6), предпочтительно, открыта, чтобы исключить явление скачкообразного передвижения частиц в потоке газ–твердое.

Боковые стенки имеют высоту L, составляющую от 1 до 10К, предпочтительно, от 1 до 7К, предпочтительно, от 1,2 до 3К. Чтобы гарантировать, что текучая среда 2 будет проходить, преимущественно, через концы ветвей (6), является предпочтительным, чтобы кинетическая энергия, необходимая для прохождения ветви, была меньше или равна потенциальной энергии, необходимой для того, чтобы текучая среда 2 вытекала через боковые стенки ветвей:

ρ4gL ≥1/2 ρ2v2 (а)

где v означает скорость текучей среды в окне 8, ρ4 означает плотность тяжелой фазы, обозначенной 4, и ρ2 означает плотность фазы, подлежащей распределению, обозначенной 2.

Проходное сечение, образуемое ветвью, может быть постоянным или переменным. Концы ветвей (6) имеют ширину С, составляющую от 0,1 до 10А, предпочтительно, от 0,5 до 7А, предпочтительно, от 1 до 5А, где А означает ширину на входе окна типа 8.

Длина Е составляет от 0 до F, предпочтительно, от 0,1 до 0,9F, предпочтительно, от 0,2 до 0,7F, где F означает высоту нижней части головки (9).

Е представляет собой расстояние между верхней частью ветвей и основанием выемок (10), F представляет собой высоту нижней части головки (9), то есть, более точно, высоту той части головки, которая не имеет отверстий, таких как (11).

Устройство распределения, соответствующее настоящему изобретению, может быть дополнено распределительной коронкой, расположенной выше или ниже распределителя (3), предназначенной для введения дополнительного газа в соответствии с условиями способа. Предпочтительно, указанная коронка, если она есть, расположена под самой нижней частью окон (7) и (8) для улучшения смешивания.

ПРИМЕРЫ

Из двух приведенных ниже примеров один соответствует предшествующему уровню техники, другой соответствует настоящему изобретению.

Текучая среда 2, соответствующая легкой фазе, распределяется в более плотной псевдоожиженной среде, содержащейся в реакционной камере.

Было проведено трехмерное моделирование методом CFD (computational fluid dynamics – вычислительная гидродинамика), с одной стороны, для известного уровня техники и, с другой стороны, в соответствии с изобретением, результаты которого представлены, соответственно, на фиг. 3 и 4.

В размещенной ниже таблице 1 представлены рабочие условия и размеры распределителей, соответствующих известному уровню техники и настоящему изобретению. Частные величины использованы в примере.

Таблица 1: Размеры устройства согласно известному уровню техники и настоящему изобретению

РАБОЧИЕ УСЛОВИЯ
Диаметр подводящего трубопровода 1 (м) от 0,1 до 3, в частности 2
Диаметр камеры 5 (м) от 1 до 15, в частности 7,5
Плотность текучей среды 2, подлежащей распределению (кг/м3) от 0,5 до 250, в частности 20
Плотность окружающий среды 4 (кг/м3) от 250 до 1000, в частности 500
РАЗМЕРЫ РАСПРЕДЕЛИТЕЛЯ ИЗВЕСТНОГО УРОВНЯ ТЕХНИКИ
Диаметр головки 9 (м) от 0,7 до 10, в частности 4
Общее число окон от 4 до 12, в частности 8
Число отверстий 11 от 100 до 500, в частности 160
Диаметр отверстий 11 (мм) 20–100, в частности 60
РАЗМЕРЫ РАСПРЕДЕЛИТЕЛЯ В СООТВЕТСТВИИ С ИЗОБРЕТЕНИЕМ
Диаметр головки 9 (м) от 0,7 до 10, в частности 4
Общее число окон от 4 до 16, в частности 8
Число ветвей от 2 до 8, в частности 4
Число отверстий 11 от 50 до 250, в частности 80
Диаметр отверстий 11 (мм) 20–100, в частности 60
Длина ветви D (м) от 1,5 до 5, в частности 2
Длина A (м) от 0,1 до 0,3, в частности 0,2
Длина B (м) от 0,1 до 0,3, в частности 0,2
Длина C (м) от 0,2 до 0,9, в частности 0,6
Длина F (м) от 0,2 до 2, в частности 0,6
Длина E (м) от 0 до 0,8, в частности 0,6
Длина J (м) от 0,7 до 2, в частности 1,3
Длина K(м) от 0,7 до 2, в частности 1,3
Длина L (м) от 0,7 до 2, в частности 1,5

На фиг. 3 и 4 показана траектория легкой фазы, подлежащей распределению в текучей среде с большей плотностью, подаваемой по трубопроводу (1), соответственно, для устройства известного уровня техники (фиг. 3) и устройства, соответствующего изобретению, (фиг. 4). В случае устройства, соответствующего изобретению, распределение подаваемого по трубопроводу газа улучшено и обеспечивает охват большей части камеры (5). Текучая среда 2 занимает около 70% объема над распределителем (3) в отличие от 27% для устройства известного уровня техники. Таким образом, легкая фаза хорошо распределена и более эффективно взаимодействует с плотной фазой, благодаря чему повышается эффективность реактора по сравнению с патентом известного уровня техники.

1. Устройство распределения легкой фазы в тяжелой фазе в реакционной камере (5), содержащей указанную тяжелую фазу в псевдоожиженном состоянии, при этом устройство включает трубопровод (1) для подачи легкой фазы, проходящей внутрь реакционной камеры (5) в ее нижней части, при этом указанный трубопровод (1) является цилиндрическим, по существу, центрированным по оси симметрии реакционной камеры (5) и открытым в верхней части благодаря первым и вторым прямоугольным окнам (7, 8), расположенным в боковой стенке трубопровода (1), при этом вторые окна (8) продолжаются ветвями (6), перпендикулярными оси симметрии реакционной камеры (5), при этом над верхней частью трубопровода (1) находится выпуклая головка (9), в которой имеются выемки (10), равномерно распределенные по всему ее нижнему краю, при этом ветви (6) выступают за периметр указанной головки (9).

2. Устройство распределения легкой фазы по п. 1, в котором первые окна (7) имеют ширину В и высоту J, а вторые окна (8) имеют ширину А и высоту К, определяемые таким образом, чтобы скорость легкой фазы при прохождении первых и вторых окон составляла от 0,3V до 20V, предпочтительно, составляла от 0,5V до 10V, где V означает скорость указанной легкой фазы в трубопроводе (1).

3. Устройство распределения легкой фазы по п. 1, в котором длина D ветвей (6), измеренная от центра О устройства, совпадающего с осью симметрии реакционной камеры (5), до их выходного конца, составляет от 0,6I до 0,95G, где G означает внутренний диаметр реакционной камеры (5), и высота L ветвей (6) у их выходного конца составляет от 1 до 10К, где К означает высоту вторых окон (8).

4. Устройство распределения легкой фазы по п. 1, в котором первые и вторые окна (7, 8) расположены попеременно, их количество четное, предпочтительно, их количество одинаково.

5. Устройство распределения легкой фазы по п. 1, в котором диаметр I головки (9) составляет от 0,05G до 0,95G, предпочтительно, от 0,2G до 0,8G, еще более предпочтительно, от 0,25G до 0,75G, где G означает внутренний диаметр реакционной камеры (5).

6. Устройство распределения легкой фазы по п. 1, в котором выемки (10) имеют треугольную или прямоугольную форму.

7. Устройство распределения легкой фазы по п. 1, в котором когда выемки (10) прямоугольные, их ширина составляет от 0,01F до 0,9F и их высота составляет от 0,01F до 0,9F, где F означает высоту нижней части головки (9).

8. Устройство распределения легкой фазы по п. 1, в котором когда выемки (10) треугольные, высота треугольника составляет от 0,01F до 0,9F, и основание треугольника составляет от 0,01F до 0,9F, где F означает высоту нижней части головки (9).

9. Устройство распределения легкой фазы по п. 1, в котором головка (9) снабжена отверстиями (11) на своде, при этом указанные отверстия (11) имеют диаметр от 1 до 100 мм, предпочтительно, от 10 до 50 мм.

10. Способ каталитического крекинга с двухзонной регенерацией, в котором используется устройство по одному из пп. 1–9 для осуществления прохождения катализатора из первой зоны регенерации во вторую зону регенерации в псевдоожиженный турбулентный слой.

11. Способ обработки биомассы, в котором используется устройство по одному из пп. 1–9 для осуществления подачи газовой фазы или суспензии газ–твердое в псевдоожиженную среду.

12. Способ гидроочистки тяжелых нефтяных фракций, в котором используется устройство по одному из пп. 1–9 для осуществления подачи водорода в псевдоожиженную среду, содержащую частицы катализатора и тяжелую углеводородную фазу, подлежащую обработке.



 

Похожие патенты:

Изобретение относится к химической промышленности и металлургии. Устройство для получения нанодисперсных оксидов металлов содержит линию 1 приготовления прекурсоров и линию 2 гидротермального синтеза, снабжённые реакторами, центрифугами и ёмкостями.

Изобретение относится к химической промышленности и металлургии. Устройство для получения нанодисперсных оксидов металлов содержит линию 1 приготовления прекурсоров и линию 2 гидротермального синтеза, снабжённые реакторами, центрифугами и ёмкостями.

Изобретение относится к опорно-распределительным устройствам для аппаратов с псевдоожиженным слоем твердых частиц, используемых для разделения систем жидкость-твердое или газ-твердое, а именно к конструкции колпачков для тарельчатых колонн, и может найти применение в установках очистки питьевой воды и сточных вод, в химической, нефтехимической, пищевой, фармацевтической и других отраслях промышленности.

Изобретение относится к вихревой камере для проведения химических реакций в псевдоожиженном слое частиц. Камера выполнена в виде двух соосных круговых усеченных конусов, образующих своими поверхностями кольцевой конический канал, стенки которого сходятся к верху к вертикальной оси камеры, а угол наклона канала равен углу между образующей конуса и его осью (осью камеры).

Изобретение относится к теплообменному устройству с твердым теплоносителем в псевдоожиженном состоянии, позволяющему контролированный теплообмен твердого теплоносителя, использующегося в эндотермическом или экзотермическом процессе, имеющем по меньшей мере одну реакционную зону, причем указанное устройство состоит из пучка теплообменных трубок, погруженных в псевдоожиженный слой твердой фазы, и указанный псевдоожиженный слой находится в камере, сообщающейся с реакционной зоной через по меньшей мере одну линию ввода твердой фазы, и причем указанный пучок теплообменных трубок состоит из совокупности продольных трубок, сгруппированных по 4: одна трубка (8)/(9) байонетного типа, содержащая центральную трубку и трубку, коаксиальную центральной трубке и окружающую ее, и 3 трубки, параллельные байонетной трубке (8)/(9) и расположенные симметрично относительно указанной байонетной трубки (8)/(9), образуя в виде сверху симметричную структуру в форме трилистника, называемую модулем пучка теплообменных трубок, причем различные модули, образованные байонетной трубкой (8)/(9) и тремя трубками (10), параллельными байонетной трубке (8)/(9), расположены с треугольным шагом, чтобы как можно полнее занимать сечение указанного теплообменного устройства, причем плотность модулей, образованных из байонетных трубок (8)/(9) и 3 трубок, параллельных байонетной трубке (8)/(9), составляет от 10 до 40 на 1 м2 поверхности теплообменного устройства, причем диаметр центральной трубки составляет от 30 до 150 мм, а диаметр трубок, коаксиальных трубке, и 3 трубок, параллельных байонетной трубке (8)/(9), составляет от 40 до 200 мм.

Группа изобретений относится к способам эффективной продувки полимерных частиц в газофазном реакторе с псевдоожиженным слоем. Способ включает полимеризацию олефиновых мономеров и необязательно сомономеров в первом сосуде реактора с образованием потока неочищенного продукта, содержащего полимеризованные твердые частицы, непрореагировавший мономер и необязательно сомономер, причем полимеризованные твердые частицы содержат олефиновый полимер, ЛОС и каталитическую систему, приведение полимеризованных твердых частиц в контакт с каталитическим ядом, выбранным из монооксида углерода, диоксида углерода, кислорода, воды, спиртов, аминов или их смесей, образуя таким образом пассивированный поток, при этом дезактивируют каталитическую систему, поддержание пассивированного потока в перемешенном состоянии во втором реакторе и приведение пассивированного потока во втором реакторе в контакт с циркулирующим газом, содержащим непрореагировавший мономер, присутствующий в количестве от 50,0 до 99,5% масc.

Изобретение относится к каталитическому реактору с применением катализатора в движущемся слое кольцевой формы, ограниченном на своей внешней периферии стенками, образующими цилиндрическую корзину (5), и на своей внутренней периферии центральным коллектором (3), при этом катализатор медленно перемещается за счет силы тяжести в пространстве, заключенном между корзиной (5) и центральным коллектором (3), и циркулирует вниз по циркуляционным стойкам (2), установленным на по существу полусферическом дне упомянутого реактора, при этом упомянутые корзины могут перемещаться вдоль по существу вертикальной оси на расстояние в несколько сантиметров, которое может достигать 10 см, при этом корзина (5) оснащена по существу вертикальными лотками (7), установленными в нижней части корзины (5), в продолжении стенки упомянутого лотка (7).

Предложен способ регенерации катализатора в процессах дегидрирования парафиновых углеводородов С3-С5 с кипящим слоем алюмохромового катализатора, циркулирующего в системе реактор - регенератор, включающий подачу смеси отработанного в реакторе катализатора и транспортного газа на верх кипящего слоя регенератора, контактирование катализатора с подаваемым под кипящий слой кислородсодержащим газом при использовании секционирующих решеток с противоточным движением через них катализатора и газа, подогрев катализатора в зоне подогрева катализатора (10) в верхней части кипящего слоя путем сжигания кокса на отработанном катализаторе и подаваемого топливного газа, последующее окисление катализатора с десорбцией продуктов окисления подаваемым кислородсодержащим газом в зоне окисления катализатора (11) в нижней части кипящего слоя регенератора и дальнейший вывод регенерированного катализатора на восстановительно-десорбционную подготовку перед подачей его в реактор, где подогрев катализатора проводят в режиме рециркуляции части циркулирующего катализатора при использовании вертикальной перегородки, разделяющей кипящий слой зоны подогрева катализатора (10) на напорную (18) и подъемную (17) секции, и подачи смеси отработанного катализатора и транспортного газа в низ подъемной секции (17).

Изобретение относится к устройству и способу получения пара-ксилола (РХ) и совместного получения низших олефинов. Представлен реактор с турбулентным кипящим слоем для получения пара-ксилола и совместного получения низших олефинов из метанола и/или диметилового эфира и бензола, причем указанный реактор с турбулентным кипящим слоем включает распределитель первого сырья для реактора и множество распределителей второго сырья для реактора, и распределитель первого сырья для реактора и множество распределителей второго сырья для реактора расположены последовательно снизу вверх в реакционной зоне реактора с турбулентным кипящим слоем; при этом количество распределителей второго сырья для реактора составляет от 2 до 10, при этом реактор с турбулентным кипящим слоем включает первый сепаратор твёрдой и газовой фаз реактора, при этом первый сепаратор твёрдой и газовой фаз реактора расположен в зоне разбавленной фазы или за пределами корпуса реактора, при этом первый сепаратор твердой и газовой фаз реактора обеспечен отверстием для подачи регенерированного катализатора, при этом отверстие для выгрузки катализатора из первого сепаратора твердой и газовой фаз реактора расположено в нижней части реакционной зоны, и отверстие для выхода газа из первого сепаратора твердой и газовой фаз реактора расположено в зоне разбавленной фазы.

Группа изобретений относится к получению мультиматериальных порошков, которые применяют в различных областях (металлургия, пластмассовая промышленность) в технологиях аддитивного синтеза и обработки поверхности напылением. Мультиматериальный порошок содержит частицы носителя, имеющие медианный размер частиц d50 от 1 мкм до 100 мкм, а также функционализирующие частицы, медианный размер частиц d50 которых в 10-1000 раз меньше, чем у частиц носителя.

Изобретение относится к устройствам и к их использованию. Описан способ модификации катализатора на основе молекулярного сита в устройстве для модификации катализатора на основе молекулярного сита, включающий введение катализатора на основе молекулярного сита, на основе молекулярного сита HZSM-5 и HZSM-11 и модификатора в модифицирующий блок, соответственно, через питающий блок, причем катализатор модифицируют посредством модификатора в модифицирующем блоке и затем выпускают в охлаждающий блок для охлаждения до температуры, составляющей менее чем 50°C, и затем охлаждаемый модифицированный катализатор перемещают в любое устройство для хранения, причем модификацию осуществляют в атмосфере инертного газа при температуре в диапазоне от 150 до 600°C в течение времени модификации в диапазоне от 0 до 10 ч; модификатор представляет собой по меньшей мере один модификатор, выбранный из фосфорного реагента, силилирующего реагента и толуола.
Наверх