Способ контроля герметичности и обнаружения места течи в трубопроводе с запорным элементом

Изобретение относится к области технической диагностики, в частности к способам контроля герметичности трубопроводов, и может быть использовано для исследования трубопроводов на герметичность и обнаружения мест течи в трубопроводах атомных станций. Способ контроля герметичности и обнаружения места течи в трубопроводе с запорным элементом заключается в регистрации акустических сигналов в двух точках по длине трубопровода и последующей обработке принятых акустических сигналов. Регистрацию акустических сигналов осуществляют в широком ультразвуковом диапазоне в двух точках по длине трубопровода, расположенных на трубопроводе до и после запорного элемента. Зарегистрированные ультразвуковые сигналы обрабатывают аналого-цифровым преобразователем и по полученным значениям строят два соответствующих точкам регистрации спектра сигналов с использованием преобразования Фурье. В построенных спектрах сигналов выделяют диапазон от 15000 до 90000 Гц и выбирают в этом диапазоне наибольшее значение амплитуды в обоих спектрах сигналов. Затем осуществляют деление амплитуд спектров сигналов в указанном частотном диапазоне на наибольшее значение амплитуды и определяют разницу между спектрами сигналов до и после запорного элемента по предложенной формуле. По определенным значениям делают вывод об отсутствии протечки при разнице S между спектрами сигналов менее -100 или о наличии незначительной протечки, если разница между спектрами сигналов находится в диапазоне от -100 до 100. Вывод о существенной протечке делают при разнице между спектрами сигналов более 100. Также предлагается ультразвуковые сигналы регистрировать с помощью датчиков акустической эмиссии. Технический результат заключается в снижении продолжительности проведения диагностического обследования и исключении влияния геометрии трубопровода на результат, полученный при диагностическом обследовании. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области технической диагностики, в частности к способам контроля герметичности трубопроводов, и может быть использовано для исследования трубопроводов на герметичность и обнаружения мест течи в трубопроводах атомных станций.

Одной из важнейших задач технической диагностики оборудования атомных станций является обнаружение протечек теплоносителя. В настоящее время наибольшее распространение получил ультразвуковой способ контроля внутренних и внешних протечек. Внутренние протечки связаны с нарушением герметичности запорной арматуры, внешние - с истечением теплоносителя через поврежденные внешние стенки конструкции. Существующие подходы основаны на анализе акустической эмиссии работающего оборудования, а также расчета корреляционной функции для пары измерительных каналов. Однако такой подход не предусматривают объективных параметров для количественной оценки величины протечки, а в некоторых случаях решение о наличии протечки принимается на основе субъективной оценки и органолептического восприятия фоновых шумов работающего оборудования.

Известен способ определения координаты течи в трубопроводах (авторское свидетельство СССР на изобретение №1283566), заключающийся в приеме акустических сигналов в двух точках по длине трубопровода, обнаружении течи и последующей корреляционной обработке принятых акустических сигналов, в результате которой определяют разность времен прихода акустических сигналов и координату места течи.

Недостатком данного способа является малая длина контролируемой области трубопровода и невозможность его применения в условиях наличия дискретных помех от технических объектов, окружающих или пересекающих трубопровод.

Наиболее близким аналогом к заявляемому техническому решению является способ контроля герметичности и определения координат места течи в продуктопроводе (патент РФ на изобретение №2181881), заключающийся в приеме акустических сигналов в двух точках по длине продуктопровода, обнаружении течи и последующей корреляционной обработке принятых акустических сигналов, в результате которой определяют разность времени прихода акустических сигналов и координаты места течи, при этом перед корреляционной обработкой принятых акустических сигналов проводят режектирование дискретных составляющих в каждом из сигналов с последующим спектральным анализом последних и из полученных спектров сигналов выделяют долговременные спектральные составляющие, длительностью превышающие 30 секунд, и с амплитудой, превышающей фон на 3-6 дБ, и по данным спектральным составляющим судят о наличии течи.

Недостатком ближайшего аналога является низкая точность измерений и последующей обработки полученных акустических сигналов за счет влияния геометрии трубопровода, а также наличия в трубопроводе опор и перемычек.

Задачей, достигаемой предлагаемым изобретением является определение степени герметичности трубопровода с запорным элементом для анализа возможности его дальнейшей эксплуатации, а также повышение качества и эффективности обнаружения мест течи трубопровода.

Технический результат, достигаемый настоящим изобретением, заключается в снижении продолжительности проведения диагностического обследования и исключении влияния геометрии трубопровода на результат, полученный при диагностическом обследовании.

Сущность изобретения состоит в том, что в способе контроля герметичности и обнаружения места течи в трубопроводе с запорным элементом, заключающемся в регистрации акустических сигналов в двух точках по длине трубопровода и последующей обработке принятых акустических сигналов, предложено регистрацию акустических сигналов осуществлять в широком ультразвуковом диапазоне в двух точках по длине трубопровода, расположенных на трубопроводе до и после запорного элемента, затем зарегистрированные в точке трубопровода до запорного элемента и в точке после запорного элемента ультразвуковые сигналы обрабатывать аналого-цифровым преобразователем и по полученным значениям строить два соответствующих точкам регистрации спектра сигналов с использованием преобразования Фурье, далее в построенных спектрах сигналов выделять диапазон от 15000 до 90000 Гц и выбирать в этом диапазоне наибольшее значение амплитуды в обоих спектрах сигналов, затем осуществлять деление амплитуд спектров сигналов в указанном частотном диапазоне на наибольшее значение амплитуды и определять разницу между спектрами сигналов до и после запорного элемента по формуле:

где - амплитуды спектров сигналов до и после запорного элемента соответственно,

i, n - номера дискретных составляющих в анализируемых участках спектра сигнала,

после чего по определенным значениям делать вывод об отсутствии протечки при разнице S между спектрами сигналов менее -100 или о наличии незначительной протечки, если разница между спектрами сигналов находится в диапазоне от - 100 до 100, или о существенной протечке при разнице между спектрами сигналов более 100.

Также предлагается ультразвуковые сигналы регистрировать с помощью датчиков акустической эмиссии.

Заявленное изобретение поясняется чертежами. На фиг. 1 представлена схема выполнения операций способа, на фиг. 2 - схемы расположения датчиков для контроля запорной арматуры, на фиг. 3 и 4 приведены спектры ультразвуковых сигналов в точках 1 и 2 двух единиц обследуемой запорной арматуры.

Предлагаемый способ осуществляется следующим образом.

На трубопровод до и после герметизирующего элемента устанавливают датчики для регистрации ультразвуковых сигналов, например, датчики акустической эмиссии GT400. Точки для установки датчиков выбирают либо в верхней части сечения трубопровода, либо в боковой его части. Точки для установки датчиков в нижней части сечения трубопровода не выбирают из-за возможных искажений акустического сигнала вследствие возможного наличия различного рода отложений.

Затем осуществляют регистрацию акустических сигналов в широком ультразвуковом диапазоне. Далее зарегистрированные ультразвуковые сигналы обрабатывают аналого-цифровым преобразователем и по полученным значениям строят два соответствующих точкам регистрации спектра сигналов с использованием преобразования Фурье.

Затем в построенных спектрах сигналов выделяют диапазон от 15000 до 90000 Гц, т.к. на более низких частотах проявляются собственные колебания трубопровода, а на более высоких - ложные пики из-за особенностей работы акустического датчика.

Далее выбирают в этом диапазоне наибольшее значение амплитуды в обоих спектрах сигналов и осуществляют деление амплитуд спектров сигналов в указанном частотном диапазоне на наибольшее значение амплитуды.

Разницу между спектрами сигналов до и после запорного элемента определяют по формуле:

где - амплитуды спектров сигналов до и после запорного элемента соответственно,

i, n - номера дискретных составляющих в анализируемых участках спектра сигнала.

По полученному значению делают вывод об отсутствии протечки при разнице S между спектрами сигналов менее -100 или о наличии незначительной протечки, если разница между спектрами сигналов находится в диапазоне от -100 до 100, или о существенной протечке при разнице между спектрами сигналов более 100.

Описанный способ был использован на Нововоронежской АЭС при обследовании арматуры системы питательной воды на байпасе и на линии рециркуляции.

В соответствии с представленной на фиг. 1 схемой реализации заявленного способа, проводили измерение акустических сигналов до (п. 1.1) и после (п. 1.2) установленного запорного элемента. На фиг. 2 приведена схема расположения точек для выполнения измерений. Цифрами отмечены номера точек измерений: 1 и 2. Стрелкой обозначено направление движения рабочей среды.

Проводили анализ сигналов, полученных при помощи датчика акустического GT400. Регистрацию выполняли в двух точках: в точке 1 до и в точке 2 после запорного элемента 3.

Обследуемая запорная арматура (запорный элемент 3) предназначалась для перекрытия потока воды под давлением 8 МПа и при температуре 160°С.

После измерения акустических сигналов в точках 1 и 2 проводили оцифровку полученных сигналов, зарегистрированных до (п. 2.1) и после (п. 2.2) запорного элемента 3. После чего проводили расчет (пп. 3.1 и 3.2 на фиг. 1) спектров оцифрованных сигналов, зарегистрированных до и после установленного запорного элемента 3. При расчете спектра тока задавали размер быстрого преобразования Фурье 1684, весовую функцию Hann и усреднение 75%.

После этого проводили выделение диапазона от 20000 до 80000 Гц в спектрах оцифрованных сигналов (п. 4.1 и 4.2 фиг. 1), зарегистрированных в точках 1 и 2 до и после запорного элемента 3. В выделенном диапазоне обоих спектров оцифрованных сигналов была выбрана наибольшая амплитуда.

Затем было осуществлено деление на наибольшую амплитуду спектров оцифрованных сигналов, зарегистрированных до (п. 6.1) и после (п. 6.2) запорного элемента 3, а далее - вычитание амплитуд нормализованных спектров оцифрованных сигналов, зарегистрированных до и после запорного элемента 3. Далее осуществляли суммирование разностей амплитуд нормализованных спектров оцифрованных сигналов, зарегистрированных до и после запорного элемента 3.

Разницу между спектрами сигналов до и после запорного элемента 3 определяли по формуле:

где - амплитуды спектров сигналов до и после запорного элемента соответственно,

i, n - номера дискретных составляющих в анализируемых участках спектра сигнала.

По полученным спектрам производили идентификацию состояния запорного элемента по суммарной разности амплитуд при условии: различие менее -100 трактуется как «отсутствие протечки», параметр в диапазоне от -100 до 100 интерпретируется как «возможна незначительная протечка», а результат более 100 означает «существенная протечка».

Спектры ультразвуковых сигналов в точках 1 и 2 двух единиц обследуемой запорной арматуры приведены на фиг. 3 и 4. При этом на фиг. 3 представлено наложение нормированных спектров до и после запорного элемента с протечками, а на фиг. 4 - наложение спектров до и после запорного элемента без протечек. В первом случае различие спектров составило S=759, а во втором случае S=-680. Таким образом, был сделан вывод о существенной протечке в запорном органе первой единицы арматуры и отсутствии протечки второй единицы арматуры.

Предлагаемый способ может быть использован на АЭС, а также для контроля герметичности трубопроводов на предприятиях и объектах техники теплоэнергетики и других отраслей промышленности.

Использование предлагаемого способа позволяет определить степень герметичности трубопровода с запорным элементом для анализа возможности его дальнейшей эксплуатации, а также повысить качество и эффективность обнаружения мест течи трубопровода.

1. Способ контроля герметичности и обнаружения места течи в трубопроводе с запорным элементом, заключающийся в регистрации акустических сигналов в двух точках по длине трубопровода и последующей обработке принятых акустических сигналов, отличающийся тем, что регистрацию акустических сигналов осуществляют в широком ультразвуковом диапазоне в двух точках по длине трубопровода, расположенных на трубопроводе до и после запорного элемента, затем зарегистрированные в точке трубопровода до запорного элемента и в точке после запорного элемента ультразвуковые сигналы обрабатывают аналого-цифровым преобразователем и по полученным значениям строят два соответствующих точкам регистрации спектра сигналов с использованием преобразования Фурье, далее в построенных спектрах сигналов выделяют диапазон от 15000 до 90000 Гц и выбирают в этом диапазоне наибольшее значение амплитуды в обоих спектрах сигналов, затем осуществляют деление амплитуд спектров сигналов в указанном частотном диапазоне на наибольшее значение амплитуды и определяют разницу между спектрами сигналов до и после запорного элемента по формуле:

где - амплитуды спектров сигналов до и после запорного элемента соответственно,

i, n - номера дискретных составляющих в анализируемых участках спектра сигнала,

после чего по определенным значениям делают вывод об отсутствии протечки при разнице S между спектрами сигналов менее -100 или о наличии незначительной протечки, если разница между спектрами сигналов находится в диапазоне от -100 до 100, или о существенной протечке при разнице между спектрами сигналов более 100.

2. Способ контроля герметичности и обнаружения места течи в трубопроводе с запорным элементом по п. 1, отличающийся тем, что ультразвуковые сигналы регистрируют с помощью датчиков акустической эмиссии.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть применено в устройстве обнаружения мест утечек рабочей среды нагруженных трубопроводов, находящихся в грунте. Особенностью данного способа локализации несанкционированной потери рабочей среды в трубопроводе на основе амплитудно-временного анализа и корреляции виброакустических сигналов является то, что дополнительно размещается третий чувствительный элемент.

Изобретение относится к дистанционному контролю состояния трубопроводной арматуры (ТПА), а также к контролю рабочих параметров исполнительных механизмов, например пневмогидравлического привода управления затвором. Система дистанционного контроля состояния запорной арматуры (ЗА) магистрального газопровода с пневматическим или пневмогидравлическим управлением включает по меньшей мере один контрольный пункт (КП), снабженный компьютером, выполненным с возможностью цветного мнемонического отображения информации о состоянии ЗА магистрального газопровода, соединенный каналами связи, по меньшей мере, с одной подсистемой, включающей, по меньшей мере, один блок контрольно-измерительных приборов (КИП) и соединенный с ним блок обработки сигналов (БОС), выполненный с возможностью приема, регистрации, обработки сигналов с КИП, включая сравнение измеренных параметров с рассчитываемыми и/или внесенными в его память пороговыми значениями, и передачи в КП.

Настоящее изобретение относится к способу многопозиционного определения положения утечек на основе улучшенной вариационной модовой декомпозиции (ВМД), включающему следующие этапы, на которых: собирают исходный сигнал об утечке в трубопроводе; выполняют декомпозицию локального среднего по множеству (ДЛСМ) на исходном сигнале об утечке с получением нескольких компонентов функции-произведения (ФП); вычисляют коэффициент корреляции каждого компонента ФП, выбирают необходимый компонент ФП согласно коэффициенту корреляции, выполняют восстановление сигнала согласно выбранному компоненту ФП и определяют значения k ВМД; выполняют ВМД на восстановленном сигнале с получением нескольких компонентов внутренней модовой функции (ВМФ), вычисляют значение многомасштабной энтропии (ММЭ) каждого компонента ВМФ и выбирают компонент ВМФ согласно значению ММЭ каждого компонента ВМФ; и выполняют восстановление сигнала на выбранном компоненте ВМФ и завершают определение положения утечки в трубопроводе путем выполнения вычисления для определения положения взаимной корреляцией на каждом сигнале об утечке после слепого разделения источников.

Настоящее изобретение относится к способу многопозиционного определения положения утечек на основе улучшенной вариационной модовой декомпозиции (ВМД), включающему следующие этапы, на которых: собирают исходный сигнал об утечке в трубопроводе; выполняют декомпозицию локального среднего по множеству (ДЛСМ) на исходном сигнале об утечке с получением нескольких компонентов функции-произведения (ФП); вычисляют коэффициент корреляции каждого компонента ФП, выбирают необходимый компонент ФП согласно коэффициенту корреляции, выполняют восстановление сигнала согласно выбранному компоненту ФП и определяют значения k ВМД; выполняют ВМД на восстановленном сигнале с получением нескольких компонентов внутренней модовой функции (ВМФ), вычисляют значение многомасштабной энтропии (ММЭ) каждого компонента ВМФ и выбирают компонент ВМФ согласно значению ММЭ каждого компонента ВМФ; и выполняют восстановление сигнала на выбранном компоненте ВМФ и завершают определение положения утечки в трубопроводе путем выполнения вычисления для определения положения взаимной корреляцией на каждом сигнале об утечке после слепого разделения источников.

Использование: для контроля герметичности металлических и стеклянных банок с продуктами. Сущность изобретения заключается в том, что выполняют динамическую деформацию крышки банки свободно падающим на поверхность крышки грузом с последующим определением амортизационных свойств крышки банки по параметрам функции перемещения свободно падающего груза по времени.

Изобретение относится к робототехническим комплексам и способам их применения и может быть использовано для определения координат протечек бассейнов выдержки АЭС. Сущность: комплекс содержит установленное на рельсовом пути (1) подвижное транспортное средство (2), погружной прибор, механизм (3) доставки погружного прибора в бассейн выдержки, фиксатор (6) вертикального положения погружного прибора, дистанционный пульт, снабженный компьютером для программного управления работой робототехнического комплекса, дублирующий пульт (9) управления, двухканальный анализатор спектров электрических сигналов погружного прибора.

Использование: для определения утечек в трубопроводах. Сущность изобретения заключается в том, что выполняют измерение звуковой волны на концах контролируемого участка трубопровода и определение координаты утечки на указанном участке за фиксированный промежуток времени путем сравнения акустических сигналов, отправленных от места деформации и полученных приемником с разностью по времени, обработку сигналов и их анализ, при этом осуществляют непрерывное измерение звуковых сигналов, посылаемых генератором, по измеренным значениям звуковых импульсов на конце контролируемого участка трубопровода вычисляют отношения между прогнозируемыми и измеренными значениями звуковой волны, при этом способ включает следующие операции: исследование трубопроводной системы звуковыми импульсами, посылаемыми генератором, прием звуковых импульсов, отраженных от места неоднородности и конца трубопровода, анализ полученных звуковых импульсов с использованием двухслойной нейронной сети с прямой передачей данных, определение ложных срабатываний и помех, определение координаты утечки по временной задержке отраженных звуковых импульсов относительно эталона, в результате принимают решение о факте возникновения или отсутствия утечки.

Способ относится к области неразрушающего контроля и технической диагностики кожухотрубных теплообменных аппаратов с использованием акустической эмиссии, эксплуатирующихся в контакте с аварийно химически опасными или горючими веществами, и может быть использован для определения утечек в теплообменном аппарате в процессе диагностирования, а также оптимизации процесса поиска мест негерметичности в трубном пучке.

Изобретение относится к контрольно-измерительной технике и может быть использовано для контроля параметров длинномерных объектов и протяженных участков в различных средах. Информационно-измерительный оптоволоконный кабель, имеющий четыре чувствительные оптоволоконные пары, каждая из которых содержит два параллельно протянутых и контактирующих между собой по общей образующей цилиндрических кварцевых стекловолокна, помещенных в общую светоотражающую оболочку, закрепляют на поверхности всех устройств нефтегазопровода.

Группа изобретений относится к диагностике систем управления и контроля в промышленных процессах. Способ проведения диагностики с помощью полевого устройства и идентификации в ответ на это диагностируемого состояния в промышленном процессе, содержит этапы, на которых: измеряют инфракрасные излучения из места в промышленном процессе с помощью матрицы инфракрасных датчиков, содержащей множество инфракрасных датчиков; сравнивают выходной сигнал с первого участка матрицы датчиков с выходным сигналом со второго участка матрицы датчиков; в ответ на сравнение предоставляют выходной сигнал, указывающий диагностируемое состояние, на основе соотношения между выходным сигналом от первого участка матрицы датчиков и выходным сигналом от второго участка матрицы датчиков, определенного на этапе сравнения.

Изобретение относится к дистанционному контролю состояния трубопроводной арматуры (ТПА), а также к контролю рабочих параметров исполнительных механизмов, например пневмогидравлического привода управления затвором. Система дистанционного контроля состояния запорной арматуры (ЗА) магистрального газопровода с пневматическим или пневмогидравлическим управлением включает по меньшей мере один контрольный пункт (КП), снабженный компьютером, выполненным с возможностью цветного мнемонического отображения информации о состоянии ЗА магистрального газопровода, соединенный каналами связи, по меньшей мере, с одной подсистемой, включающей, по меньшей мере, один блок контрольно-измерительных приборов (КИП) и соединенный с ним блок обработки сигналов (БОС), выполненный с возможностью приема, регистрации, обработки сигналов с КИП, включая сравнение измеренных параметров с рассчитываемыми и/или внесенными в его память пороговыми значениями, и передачи в КП.
Наверх