Стенд для тепловакуумных испытаний элементов космических аппаратов

Изобретение относится к испытаниям элементов космических аппаратов (КА) с имитацией условий космического пространства. Стенд содержит вакуумную камеру (ВК) с системой ее вакуумирования (СВ), криогенный экран, расположенный по внутреннему контуру ВК, имитатор внешних тепловых потоков, систему управления процессом испытаний. Стенд снабжен загрузочной крышкой с размещенными между ее фланцем и фланцем корпуса ВК уплотнительными прокладками, образующими вакуумную полость. Крышка оснащена механизмом подъема и опускания с подвешенным к ней столом, на котором устанавливается элемент КА, подключенный к системе функционирования. Предусмотрены система прогрева ВК и исполнительных органов СВ - в виде кабельных нагревателей с термопарами, теплоизолирующие чехлы для укрытия всех нагревательных узлов, пневматическая система для управления исполнительными органами СВ и ее охлаждения, система подогрева и подачи сжатого воздуха в криогенный экран. Техническим результатом является повышение достоверности испытаний и подтверждение работоспособности отдельных элементов КА, преимущественно в условиях сверхвысокого вакуума. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к области испытательной техники, в частности к тепловакуумным испытаниям элементов космических аппаратов (КА) в условиях, приближенных к эксплуатации КА в открытом космическом пространстве, а также может найти применение в тех областях техники, где предъявляются повышенные требования к вопросам теоретических и экспериментальных исследований при отработке тепловых режимов.

Известен стенд для тепловакуумных испытаний элементов КА, содержащий вакуумную камеру, систему вакуумирования, сообщенную с вакуумной камерой, криогенный экран, расположенный по внутреннему контуру вакуумной камеры, имитатор внешних тепловых потоков, состоящий из секций, систему управления процессом проведения испытаний (Патент RU №2302983 С1, Бюл. №20, 20.07.2007 г., МПК B64G 7/00 (2006.01)).

Наиболее близким по технической сущности к предлагаемому изобретению является стенд для тепловакуумных испытаний элементов КА, содержащий вакуумную камеру с установленным внутри нее КА, систему вакуумирования, подсоединенную к вакуумной камере, криогенный экран, имитатор внешних тепловых потоков, состоящий из секций, систему управления тепловакуумными испытаниями (Андрейчук О.Б., Малахов Н.Н. Тепловые испытания космических аппаратов. - М.: Машиностроение, 1982 г., стр. 23, рис. 3.1., стр. 45, рис. 3.18.).

Этот стенд принят за прототип.

Недостатком аналога и прототипа является то, что в вакуумной камере практически невозможно получить сверхвысокий вакуум (<10-5 Па, Вакуумная техника, справочник. Под общей редакцией К.Е. Демихова, Ю.В. Панфилова. Москва, Машиностроение 2009 г., стр. 11) из-за большого газоотделения от крупногабаритных КА и очень большой площади стенок вакуумной камеры и уплотнительных элементов (в основном резиновых), входящих в состав вакуумной камеры, а также внешнего натекания из атмосферы через уплотнения в корпусе вакуумной камеры (например, через загрузочную крышку, фланцы, к которым стыкуются элементы откачной вакуумной системы, электрические разъемы).

При экспериментальной отработке является важным подтверждение работоспособности элементов КА (например, приборов, различной аппаратуры) в условиях, максимально приближенных к натурным. В данном случае это подтверждение работоспособности элементов КА в условиях сверхвысокого вакуума (10-6 Па). Испытания различной аппаратуры в условиях сверхвысокого вакуума актуальны, например, при длительной работе космической станции на окололунной орбите или при полете КА к планетам Солнечной системы. Сверхвысокий вакуум характеризуется давлением газа, при котором не происходит заметного изменения свойств поверхности, первоначально свободной от адсорбированного газа, прошедшей предварительную дегазацию. В России существуют вакуумные камеры, в которых можно получить сверхвысокий вакуум, объемом до 1 л. Необходимо создать вакуумную камеру объемом до 1 м3, что позволило бы проводить испытания аппаратуры с габаритами до 400×400×400 мм.

Задачей изобретения является обеспечение проведения тепловакуумных испытаний элементов КА в условиях сверхвысокого вакуума.

Техническим результатом изобретения является повышение достоверности испытаний и подтверждение работоспособности отдельных элементов КА при имитации натурных условий эксплуатации.

Технический результат достигается за счет того, что в стенд для тепловакуумных испытаний элементов КА, содержащий вакуумную камеру, систему вакуумирования, сообщенную с вакуумной камерой, криогенный экран, расположенный по внутреннему контуру вакуумной камеры, имитатор внешних тепловых потоков, состоящий из секций, систему управления процессом проведения испытаний, введены загрузочная крышка вакуумной камеры с размещенными между ее фланцем и фланцем корпуса вакуумной камеры внутренней и внешней уплотнительными прокладками, образующими между собой вакуумную полость, и оснащенная механизмом ее подъема и опускания с подвешенным к ней столом, на котором устанавливается элемент КА, подключенный к системе функционирования, система прогрева вакуумной камеры и исполнительных органов системы вакуумирования, выполненная в виде кабельных нагревателей с термопарами, теплоизолирующие чехлы для укрытия всех нагревательных узлов, пневматическая система для управления исполнительными органами системы вакуумирования и ее охлаждения, система подогрева и подачи сжатого воздуха в криогенный экран.

При этом внешняя уплотнительная прокладка вакуумной полости выполнена из фтористой резины круглого сечения, а внутренняя уплотнительная прокладка вакуумной полости выполнена из медной проволоки, механизм подъема и опускания загрузочной крышки выполнен в виде П-образного каркаса, на вертикальных стойках которого находятся роликовые направляющие для перемещения каретки с подвешенной к ней загрузочной крышкой, концы всех кабельных нагревателей с термопарами выведены на пластину с закрепленными на ней разъемами, теплоизолирующие чехлы для укрытия всех нагревательных узлов выполнены из кремнийорганических волокон.

На чертже (Фиг. 1) представлен общий вид стенда для тепловакуумных испытаний элементов КА, где:

1 - вакуумная камера;

2 - система вакуумирования с исполнительными органами;

3 - криогенный экран;

4 - имитатор внешних тепловых потоков;

5 - система управления процессом проведения испытаний;

6 - загрузочная крышка вакуумной камеры;

7 - стол;

8 - элемент КА;

9 - система функционирования элементом КА;

10 - вакуумная полость;

11 - внутренняя уплотнительная прокладка;

12 - внешняя уплотнительная прокладка;

13 - механизм подъема и опускания загрузочной крышки;

14 - П-образный каркас на вертикальных стойках;

15 - каретка с роликовыми направляющими;

16 - система прогрева вакуумной камеры и исполнительных органов системы вакуумирования;

17 - пластина с разъемами;

18 - теплоизолирующие чехлы;

19 - пневматическая система для управления исполнительными органами системы вакуумирования и ее охлаждения;

20 - система подогрева и подачи сжатого воздуха в криогенный экран;

21 - хранилище жидкого азота.

Стенд для тепловакуумных испытаний элементов КА включает вакуумную камеру 1, систему вакуумирования с исполнительными органами 2, сообщенную с вакуумной камерой 1, криогенный экран 3, расположенный по внутреннему контуру вакуумной камеры 1, имитатор внешних тепловых потоков 4, состоящий из секций, систему управления процессом проведения испытаний 5, загрузочную крышку 6 вакуумной камеры 1 с подвешенным к ней столом 7, на котором устанавливается элемент КА 8, подключенный к системе функционирования элементом КА 9. В загрузочной крышке 6 между ее фланцем и фланцем корпуса вакуумной камеры 1 размещены внутренняя 11 и внешняя 12 уплотнительные прокладки, образующие между собой вакуумную полость 10. Внутренняя уплотнительная прокладка 11 выполнена из медной проволоки, а внешняя уплотнительная прокладка 12 - из фтористой резины (например, «Viton» («Витон»), Вакуумная техника, справочник. Под общей редакцией К.Е. Демихова, Ю.В. Панфилова. Москва, Машиностроение 2009 г., стр. 93, табл. 4.16). Кроме того, в стенд введены механизм подъема и опускания загрузочной крышки 13, выполненный, например, в виде П-образного каркаса с вертикальными стойками 14, по которым движется каретка с роликовыми направляющими 15 с закрепленной на ней загрузочной крышкой 6, система прогрева вакуумной камеры и исполнительных органов системы вакуумирования 16, выполненная в виде кабельных нагревателей с термопарами, концы которых выведены на пластину с закрепленными на ней разъемами 17, теплоизолирующие чехлы 18 для укрытия всех нагревательных узлов вакуумной камеры 1 и системы вакуумирования с исполнительными органами 2, выполненные из кремнийорганических волокон (например, многофункциональный изоляционный материал «Supersil» («Суперсил»), URL: http://www.etnotrade.ru/ognezashhita/supersil/), пневматическая система для управления исполнительными органами системы вакуумирования и ее охлаждения 19, система подогрева и подачи сжатого воздуха в криогенный экран 20, хранилище жидкого азота 21, обеспечивающее имитацию «холодного» космического пространства.

Процесс тепловакуумных испытаний элементов КА осуществляется следующим образом.

Устанавливают на стол 7, подвешенный к загрузочной крышке 6, элемент КА 8 и соединяют его с системой функционирования этого элемента 9 в условиях, приближенных к условиям эксплуатации, закрывают загрузочную крышку 6 вакуумной камеры 1 с помощью механизма подъема и опускания загрузочной крышки 13, вакуумируют вакуумную камеру 1 и вакуумную полость 10 загрузочной крышки 6 с помощью системы вакуумирования 2 (например, механическим насосом EDWARDS GXS160/1750, турбомолекулярным насосом SHIMADZU ТМР-1103МР) и системы управления процессом проведения испытаний 5, пневматической системы 19 для управления исполнительными органами системы вакуумирования и ее охлаждения, до давления, исключающего конвективный теплообмен в вакуумной камере 1 (например, до давления 10-3 Па). Захолаживают криогенный экран 3, например, жидким азотом из хранилища жидкого азота 21 (например, на базе резервуаров ЦТК-8/0,25М3), до температуры, имитирующей «холод» космического пространства (например, до температуры минус 186±3°С). С помощью системы управления процессом проведения испытаний 5 одновременно включают имитатор внешних тепловых потоков 4 (например, из инфракрасных нагревателей), состоящий из секций, для поддержания на элементе КА 8 заданной температуры. Для достижения сверхвысокого вакуума начинают прогрев вакуумной камеры 1 и исполнительных органов системы вакуумирования 2 с помощью системы прогрева 16, например, до температуры 200°С, в течение, например, 10 часов. Продолжают вакуумирование вакуумной камеры 1 с помощью системы вакуумирования 2 (например, криогенными насосами Trillium Сгуо-Р1ех8) и системы управления процессом испытаний 5, пневматической системы 19, обеспечивающей управление исполнительными органами системы вакуумирования и ее охлаждение, например, до давления<10-5 Па. После получения заданных условий, при которых эксплуатируется элемент КА 8, то есть сверхвысокого вакуума в вакуумной камере 1 и заданной температуры на элементе КА 8, выключают систему прогрева вакуумной камеры и исполнительных органов системы вакуумирования 16, проверяют работоспособность элемента КА 8 с помощью системы функционирования 9 в течение заданного времени. По окончании испытаний отогревают криогенный экран 3 до нормальной температуры (например, 15-20°С) с помощью системы подогрева и подачи сжатого воздуха в криогенный экран 20, после чего разгерметизируют вакуумную камеру 1.

Предлагаемое техническое решение позволяет повысить достоверность испытаний и подтвердить работоспособность отдельных элементов КА за счет имитации натурных условий эксплуатации, в частности, сверхвысокого вакуума, и проводить испытания на новом качественном уровне.

Предлагаемый стенд может найти широкое практическое применение для получения экспериментальных данных при решении проблем, связанных с обеспечением длительной работоспособности аппаратуры, работающей в открытом космическом пространстве, при работе КА на окололунной орбите и полете автоматических КА к другим планетам Солнечной системы.

1. Стенд для тепловакуумных испытаний элементов космических аппаратов, содержащий вакуумную камеру, систему вакуумирования, сообщенную с вакуумной камерой, криогенный экран, расположенный по внутреннему контуру вакуумной камеры, имитатор внешних тепловых потоков, состоящий из секций, систему управления процессом проведения испытаний, отличающийся тем, что в него введены загрузочная крышка с размещенными между ее фланцем и фланцем корпуса вакуумной камеры внутренней и внешней уплотнительными прокладками, образующими между собой вакуумную полость, и оснащенная механизмом подъема и опускания загрузочной крышки с подвешенным к ней столом, на котором устанавливается элемент космического аппарата, подключенный к системе функционирования, система прогрева вакуумной камеры и исполнительных органов системы вакуумирования, выполненная в виде кабельных нагревателей с термопарами, теплоизолирующие чехлы для укрытия всех нагревательных узлов, пневматическая система, обеспечивающая управление исполнительными органами системы вакуумирования и ее охлаждение, система подогрева и подачи сжатого воздуха в криогенный экран.

2. Стенд для тепловакуумных испытаний элементов космических аппаратов по п. 1, отличающийся тем, что внешняя уплотнительная прокладка вакуумной полости выполнена из фтористой резины круглого сечения, а внутренняя уплотнительная прокладка вакуумной полости выполнена из медной проволоки.

3. Стенд для тепловакуумных испытаний элементов космических аппаратов по п. 1, отличающийся тем, что механизм подъема и опускания загрузочной крышки выполнен в виде П-образного каркаса, на вертикальных стойках которого находятся роликовые направляющие для перемещения каретки с подвешенной к ней загрузочной крышкой.

4. Стенд для тепловакуумных испытаний элементов космических аппаратов по п. 1, отличающийся тем, что концы всех кабельных нагревателей с термопарами выведены на пластину с закрепленными на ней разъемами.

5. Стенд для тепловакуумных испытаний элементов космических аппаратов по п. 1, отличающийся тем, что теплоизолирующие чехлы для укрытия всех нагревательных узлов выполнены из кремнийорганических волокон.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике, а именно к устройствам, применяемым при наземном тестировании. Универсальный имитатор транспортно-пускового контейнера состоит из корпуса с основанием в виде плиты, верхней горизонтальной крышки, вертикальных боковых стенок с окнами и с угловыми направляющими, толкателя и его пружин.

Изобретение относится к стендовым испытаниям электрических ракетных двигателей. Система отвода теплоты при испытаниях электрических ракетных двигателей в вакуумных камерах, имитирующих космическую среду, включает теплоотводящий охлаждаемый экран и чиллер.

Изобретение относится к области машиностроения, а более конкретно к виброакустическим испытаниям. Способ испытаний изделий космической техники на виброакустическое воздействие заключается в том, что в пространстве между испытуемым объектом и расположенным вокруг него излучателями звукового сигнала создается акустическое поле.

Изобретение относится к испытательной технике, а более конкретно к способу и устройству имитации невесомости трансформируемых систем космических аппаратов. Способ имитации невесомости трансформируемых систем космических аппаратов включает прикрепление привязного аэростата к трансформируемой системе.

Изобретение относится к области общего машиностроения и может быть использовано для резкого (мгновенного) создания разреженной среды внутри камеры, имитирующей высотные факторы полета, путем перепуска среды из камеры в смежный сосуд или емкость с заранее созданным заданным разрежением среды. Устройство содержит корпус 1, состоящий из соединенных между собой верхнего 2 и нижнего 3 колец Г-образного поперечного сечения, и снабжен прижимным кольцом 4.

Изобретение относится к робототехнике, а именно к автоматическим мобильным роботам, и может быть использовано для имитации невесомости при наземных испытаниях на функционирование подвижных элементов космических аппаратов, в частности крыльев солнечных батарей. Устройство содержит мобильную робототехническую платформу на всенаправленных колесах, выполненную с возможностью перемещения в любом направлении и вращения вокруг своей оси.

Изобретение относится к испытательному оборудованию для проведения стендовых испытаний - ракетным лабораторным двигателям на эффекте Холла, в частности торцевым холловским двигателям (ТХД), а также к испытательным стендам для исследования этих двигателей. Ракетный лабораторный двигатель на эффекте Холла содержит электрическую часть, магнитный контур, криостат, средства подключения к источникам напряжения и средства подачи плазмообразующего вещества.

Изобретение относится к разделу пилотируемой космонавтики и предназначено для подготовки космонавтов экипажей международных космических станций (МКС) и транспортных космических кораблей (ТПК) к так называемой внутрикорабельной деятельности при имитации в земных условиях невесомости на орбите Земли. Учебный тренажерно-моделирующий комплекс для подготовки космонавтов к внутрикорабельной деятельности включает: контроллер, компьютерную систему, рабочее место, перчатки виртуальной реальности с тактильной обратной связью, шлем виртуальной реальности, микротелефонную гарнитуру, экзоскелет верхних конечностей и комплект датчиков медицинского контроля.

Изобретение относится, преимущественно к наземным тепловакуумным испытаниям систем космических объектов (СКО). Способ включает установку СКО в вакуумную камеру с криоэкраном (КЭ), которую вакуумируют и одновременно захолаживают СКО, подавая жидкий азот в полость КЭ.
Изобретение относится преимущественно к наземным тепловакуумным испытаниям космических объектов (КО). Способ включает размещение КО в вакуумной камере с криоэкранами, имитирующими «холодный» космос, и облучение КО световым потоком от имитатора солнечного излучения.

Изобретение относится к способам криогенно-прочностных испытаний и может быть использовано для испытания водородных баков в криостате. Сущность: соединяют объемы бака (30) и криостата (1).
Наверх