Устройство для получения композиционной мембраны с полиэлектролитными слоями

Изобретение относится к устройству для получения композиционной мембраны с полиэлектролитными слоями, содержащему емкость с размещенной в ней реакционной камерой с ультразвуковым излучателем и мешалкой. Над реакционной камерой расположены пять бункеров с исходными для разделения и очистки водно-спиртовых и/или иных промышленно-технологических смесей компонентами, такими как полидиметилсилоксан, гептан, (3-аминопропил)триэтоксисилан, суспензия FeBTC в гептане, дилаурат дибутилолово, поступающими в реакционную камеру, из основания которой через магистраль с дозатором реакционная смесь проходит через отверстие в основании емкости на предназначенную для формирования композиционной мембраны фильеру с подложкой, между которой и системой последовательно размещенных с общим дозатором бункеров расположен сушильный шкаф для образования в нем селективного слоя, селективные свойства которого, включая экспериментальные смеси и пермеат, фиксирует используемый в схеме устройства газовый хроматограф, причем подложка фильеры выполнена микропористой, между сушильным шкафом и последовательно размещенными бункерами с общим дозатором расположен узловой механизм для нанесения полиэлектролитных слоев, который выполнен в виде не менее восьми сосудов, один из которых заполнен поликатионом поли(аллиламин гидрохлоридом), второй заполнен полианионом поли(натрий 4-стиролсульфонатом), остальные заполнены водой для удаления излишков в каждом полученном полиэлектролитном слое, при этом экспериментальная смесь поступает через систему бункеров во вторую камеру, охлаждаемую жидким азотом, для конденсации паров экспериментальной смеси, а селективность дополнительно фиксируют с хроматографа на экран компьютера. Полученные композиционные мембраны на основе полимерного композита полидиметилсилоксан - FeBTC, с нанесенными на поверхность полиэлектролитными слоями, обладают улучшенными транспортными свойствами, эффективностью, производительностью и селективностью выделения этанола из водосодержащих смесей. 1 ил., 1 табл.

 

Изобретение относится к области химии, в частности, мембранной технологии, и может быть использовано для приготовления высокоэффективных мембран с целью использования для очистки и разделения различных промышленно-значимых технологических жидких сред, необходимых для пищевой, химической, нефтехимической, фармацевтической и других отраслей промышленности.

Анализ источников патентной информации и научной литературы выявил аналоги установок для получения различных типов мембран [1-3]. Известно устройство [1], которое содержит технический комплект приборов для синтеза полимера и формирования первапорационных мембран. Данное устройство не отвечает экологической безопасности, поскольку связано с использованием токсичных веществ, что вызывает дополнительные затраты на процесс соблюдения экологических норм, и, кроме того, приводит к снижению производительности и эффективности.

Известно устройство [2], которое предназначено для получения фуллеренсодержащих мембран на основе поли-2,6-диметилфениленоксида. Однако данное устройство имеет ограничения, связанные с разделением только многокомпонентных смесей. Кроме того, в данном устройстве используются токсичные вещества, что также не отвечает экологической безопасности. Анализ патентной и научной литературы выявил фактически один источник информации, описывающий устройство для получения мембраны на основе полимерного композита [3], который является наиболее близким по достигаемому техническому результату и принят в качестве прототипа. Это устройство содержит две реакционные камеры с мешалкой и излучателем ультразвука: в первой реакционной камере получают композицию при перемешивании поливинилового спирта, воды и фуллеренола С60-(ОН)22-24, во второй реакционной камере к полученной композиции добавляют дополнительный компонент (малеиновую кислоту). Формирование полимерной мембраны происходит в сушильном шкафу при тепловой обработке. Полученная мембрана была изучена в процессе первапорации при разделении равновесной смеси реакции этерификации и смеси этанол-вода.

К недостаткам прототипа относится высокая стоимость получения мембран, низкая производительность и недостаточная однородность за счет диспергирования наночастиц в объеме полимерного раствора, что ограничивает использование данного устройства для получения полимерных мембран и, в целом, делает ее с очень ограниченными и узкоспециализированными возможностями, и к тому же достаточно высокой стоимости. Так же основным недостатком прототипа является отсутствие возможности проведения поверхностной модификации мембран посредством нанесения полиэлектролитных слоев.

Техническим результатом заявляемого устройства для получения композиционных полимерных мембран с нанесенными на поверхность полиэлектролитными слоями является снижение стоимости их получения, повышение производительности, а также улучшение экологических и производственных условий и существенное расширение сферы использования получаемых мембран за счет конструкционных возможностей использования широкого класса полимеров. Кроме того, заявленное устройство, позволяет, что очень важно, значительно улучшить транспортные свойства мембран, в частности, повысить производительность и селективность выделения заданного компонента из разделяемой жидкой смеси. По сути, заявленное устройство можно отнести к новому типу композиционных мембран на основе полимерных композитов (в частности, полидиметилсилоксан-FeBTC) с нанесенными на поверхность полиэлектролитными слоями.

Заявленное устройство поясняется чертежом, на котором представлена его технологическая схема.

Устройство для получения композиционных мембран с полиэлектролитным наслаиванием содержит реакционную камеру 1, которая помещена в емкость, оснащенную ультразвуковым излучателем 2. Камера 1 заполняется исходными компонентами из бункеров 3, 4, 5, 6, 7, которые размещены над камерой 1, через дозаторы 8, 9, 10, 11, 12. Компоненты поступают в реакционную камеру последовательно при перемешивании с периодической обработкой ультразвуком. Далее через магистраль 13, оснащенную дозатором 14, полимерный раствор поступает на фильеру 15, с закрепленной пористой подложкой 16. Затем полученная композиционная мембрана перемещается в сушильный шкаф 17, в котором происходит образование селективного слоя, посредством испарения растворителя. Устройство так же оснащено узловым механизмом для нанесения полиэлектролитных слоев, который представляет из себя сосуд с поликатионом 18, сосуды с водой 19, 20, 21, 23, 24, 25 и сосуд с полианионом 22. Транспортные свойства полученной мембраны изучаются в процессе разделения экспериментальной смеси, которая находится в бункере 26. Смешивание компонентов экспериментальной смеси производится из бункеров 27, 28 с помощью дозаторов 29, 30. Из бункера 26 с помощью дозатора 31 экспериментальная смесь попадает на мембрану. Конденсация паров пермеата (пермеат - смесь компонентов, прошедшая через мембрану) осуществляется в камере 32, охлаждаемой жидким азотом, из которой пробу подают на анализ методом газовой хроматографии, осуществляемой прибором 33, подключенным к компьютеру 34 для изучения состава пермеата.

Работа заявляемого устройства осуществляется следующим образом: в реакционную камеру 1 из бункера 3 и 4 через дозаторы 8, 9 поступают ПДМС и гептан, далее раствор перемешивается в течение 60 минут и обрабатывается в течение 30 минут ультразвуком. Затем в реакционную камеру из бункера 5 через дозатор 10 поступает сшивающий агент ((3-аминопропил)триэтоксисилан, АПТМС), полученная реакционная смесь перемешивается в течение 30 минут и затем обрабатывается в течение 15 минут ультразвуком. Далее в реакционную камеру поступает суспензия FeBTC в гептане из бункера 6 с помощью дозатора 11, затем реакционная смесь перемешивается в течение 60 минут и обрабатывается ультразвуком в течение 30 минут. Далее в реакционную камеру из бункера 7 через дозатор 12 поступает катализатор (дилаурат дибутилолова), затем реакционная смесь перемешивается в течение 60 минут и обрабатывается ультразвуком в течение 30 минут. Далее полимерная смесь по магистрали 13 через дозатор 14 поступает на микропористую подложку 16. Далее с помощью фильеры 15 полимерная смесь растягивается по микропористой подложке и затем перемещается в сушильный шкаф 17 для последующего испарения растворителя и образования селективного слоя. Далее мембрана на пластиковой подложке перемещается в раствор поликатиона (поли(аллиламин гидрохлорида), ПАГ) 18 на 10 минут, затем 15 раз в воду 19 на 1 секунду, затем 3 раза в воду 20 на 5 секунд и 1 раз в сосуд с водой 20 на 15 секунд. Затем опускают мембрану в раствор полианиона (поли(натрий 4-стиролсульфонат), ПСС) 22 на 10 минут, затем 15 раз в сосуд с водой 23 на 1 секунду, затем 3 раза в сосуд 24 на 5 секунд и 1 раз в сосуд 25 на 15 секунд. Далее процедуру нанесения полиэлектролитных слоев повторяют 5-10 раз. Нанесение менее 5 полиэлектролитных бислоев приводит к невоспроизводимым транспортным свойствам полученных мембран. Далее мембрана в течение 12 часов сохнет на воздухе и поступает в реакционную камеру 32, где изучаются транспортные свойства разработанных мембран. Смешивание компонентов экспериментальной смеси производится из бункера 27, содержащий этанол, и бункера 28, содержащий воду, с помощью дозаторов 29 и 30, соответственно. Из бункера 26 с помощью дозатора 31 экспериментальная смесь этанола и воды попадает на мембрану. Конденсация паров пермеата осуществляется в камере 32, охлаждаемой жидким азотом, из которой пробу подают на анализ методом газовой хроматографии, осуществляемой прибором 33, подключенным к компьютеру 34 для изучения состава пермеата.

Заявленное изобретение апробировано в режиме реального времени на лабораторной базе Санкт-Петербургского государственного университета. В результате многочисленных экспериментов были получены мембраны с составом ПДМС:гептан:АПТМС:FeBTC:катализатор (0.5:9.5:0.038:0.025:0.005), содержащий на поверхности 5, 7, 10 бислоев полиэлектролитов ПАГ, ПСС.

Производительность мембран рассчитывали по формуле где m - масса пермеата, образовавшегося за время τ с поверхности мембраны площадью F. Эффективная площадь мембраны была 14.8 см2. Состав исходной смеси и пермеата определяли методом газовой хроматографии на хроматографе Хроматэк - Кристалл 5000 с детектором по теплопроводности. В качестве газа-носителя использовался гелий. Хроматографическое разделение проводилось на стеклянной насадочной колонке «Hayesep R 80/100» длиной 2 метра и диаметром 3 мм. Рабочая температура термостатирования колонки составляла 180°С, температура испарителя 230°С. Поток газа-носителя составлял 30 мл/мин. Пробы анализируемых жидкостей вводились автоматическим жидкостным дозатором ДАЖ-2М, объем пробы составлял 0.2 мкл. Обработка хроматограмм производилась на основе метода внутренней нормализации.

В Таблице представлены результаты экспериментов на примерах 4-х образцов с разным количеством бислоев (0, 5, 7 и 10) и транспортными свойствами полученных мембран при разделении смеси 50 масс. % этанола - 50 масс. % воды.

Как показывают результаты исследований, проведенных в режиме реального времени, и конкретные примеры реализации заявляемого изобретения, полученные данные по транспортным свойствам композиционной полимерной мембраны подтверждают качественно новые возможности заявленной конструкции, оригинальность ее технологической схемы, а также, что очень важно, высокую эффективность, производительность и селективность, особенно востребованных при очистке и разделении разных технологических жидких сред в таких сферах производства, как пищевой, химической, нефтехимической, фармацевтической и других отраслях промышленности.

Список используемых источников информации:

1. RU Патент 131649, 2013

2. RU Патент 88009, 2009

3. RU Патент 2504429, 2012 (Прототип)

Устройство для получения композиционной мембраны с полиэлектролитными слоями, содержащее емкость с размещенной в ней реакционной камерой с ультразвуковым излучателем и мешалкой, над реакционной камерой расположены пять бункеров с исходными для разделения и очистки водно-спиртовых и/или иных промышленно-технологических смесей компонентами, такими как полидиметилсилоксан, гептан, (3-аминопропил)триэтоксисилан, суспензия FeBTC в гептане, дилаурат дибутилолово, поступающими в реакционную камеру, из основания которой через магистраль с дозатором реакционная смесь проходит через отверстие в основании емкости на предназначенную для формирования композиционной мембраны фильеру с подложкой, между которой и системой последовательно размещенных с общим дозатором бункеров расположен сушильный шкаф для образования в нем селективного слоя, селективные свойства которого, включая экспериментальные смеси и пермеат, фиксирует используемый в схеме устройства газовый хроматограф, причем подложка фильеры выполнена микропористой, между сушильным шкафом и последовательно размещенными бункерами с общим дозатором расположен узловой механизм для нанесения полиэлектролитных слоев, который выполнен в виде не менее восьми сосудов, один из которых заполнен поликатионом поли(аллиламин гидрохлоридом), второй заполнен полианионом поли(натрий 4-стиролсульфонатом), остальные заполнены водой для удаления излишков в каждом полученном полиэлектролитном слое, при этом экспериментальная смесь поступает через систему бункеров во вторую камеру, охлаждаемую жидким азотом, для конденсации паров экспериментальной смеси, а селективность дополнительно фиксируют с хроматографа на экран компьютера.



 

Похожие патенты:

Настоящее изобретение относится к способу получения гибридных электролитических мембран на основе сшитого поливинилового спирта, модифицированного аминосульфоновой кислотой и гидролизированным тетраэтоксисиланом. В данном способе 10% раствор поливинилового спирта в диметилсульфоксиде перемешивают в течение 1 часа при 80°С и после выдержки в течение 12 часов в него добавляют 0.003-0.008 моля аминосульфоновой кислоты.

Изобретение относится к способу получения привитой полимером и функционализированной нетканой мембраны, приспособленной для использования в процессах разделения, и полученной таким способом мембране, а также к способам разделения с применением мембраны. Способ получения привитой полимером и функционализированной нетканой мембраны, приспособленной для использования при захвате целевой молекулы, включает: i) получение нетканого полотна, содержащего множество полимерных волокон; ii) прививочную полимеризацию акрилатного или метакрилатного полимера на множество полимерных волокон с получением множества сегментов полимера, ковалентно прикрепленных к волокнам, в результате чего получают привитые полимером волокна, причем стадия прививочной полимеризации включает: a) контактирование нетканого полотна с раствором, содержащим термический свободнорадикальный инициатор, чтобы обеспечить абсорбцию термического инициатора в нетканое полотно, b) контактирование нетканого полотна с раствором, содержащим по меньшей мере один акрилатный или метакрилатный мономер, и c) воздействие теплом на нетканое полотно, чтобы инициировать полимеризацию акрилатного или метакрилатного мономера; и iii) функционализацию привитых полимером волокон с целью прикрепления по меньшей мере одной функциональной группы, способной связывать целевую молекулу с сегментами полимера привитых полимерных волокон.

Изобретение относится к способу получения привитой полимером и функционализированной нетканой мембраны, приспособленной для использования в процессах разделения, и полученной таким способом мембране, а также к способам разделения с применением мембраны. Способ получения привитой полимером и функционализированной нетканой мембраны, приспособленной для использования при захвате целевой молекулы, включает: i) получение нетканого полотна, содержащего множество полимерных волокон; ii) прививочную полимеризацию акрилатного или метакрилатного полимера на множество полимерных волокон с получением множества сегментов полимера, ковалентно прикрепленных к волокнам, в результате чего получают привитые полимером волокна, причем стадия прививочной полимеризации включает: a) контактирование нетканого полотна с раствором, содержащим термический свободнорадикальный инициатор, чтобы обеспечить абсорбцию термического инициатора в нетканое полотно, b) контактирование нетканого полотна с раствором, содержащим по меньшей мере один акрилатный или метакрилатный мономер, и c) воздействие теплом на нетканое полотно, чтобы инициировать полимеризацию акрилатного или метакрилатного мономера; и iii) функционализацию привитых полимером волокон с целью прикрепления по меньшей мере одной функциональной группы, способной связывать целевую молекулу с сегментами полимера привитых полимерных волокон.

Изобретение относится к мембранной технике и технологии, а именно к способам получения изделий, используемых в качестве протон-проводящего полимерного электролита в низкотемпературных водородно-воздушных топливных элементах. Мембрану МФ-4СК в Н+-форме располагают между камерами двухкамерной ячейки, одна из которых заполнена водно-этиленгликольным раствором 0,0025-0,005 М гексахлорплатиновой кислоты (H2PtCl6) с содержанием этиленгликоля (далее ЭГ) 25-50% по объему, другая - водным раствором 0,05 М боргидрида натрия (NaBH4) с добавлением 0,5 М гидроксида натрия (NaOH).

Изобретение относится к способу модификации ионообменных мембран противоположно заряженными полиэлектролитами с целью повышения ионной селективности мембран, а также к модифицированным данным способом мембранам, обладающим повышенной ионной селективностью. Способ модификации катионообменных мембран полидиаллилдиметиламмоний хлоридом, ПДАДМАХ, с целью повышения ионной селективности мембран, отличающийся тем, что модификацию осуществляют путем выдерживания мембраны в растворе ПДАДМАХ в растворителе, обеспечивающем степень набухания мембраны, повышенную относительно условий эксплуатации мембраны, как минимум, в три раза, где растворитель представляет собой водный раствор низшего алифатического спирта, выбранного из метанола, этанола и изопропанола, и концентрация спирта в водном растворе составляет примерно от 20 масс.
Изобретение относится к битумно-полимерной композиции, которая может найти применение, в частности, при изготовлении дорожных вяжущих веществ, а также для изготовления внутренних и внешних покрытий для промышленных областей применения. Битумно-полимерная композиция, содержит битум, от 0,5 до 10 мас.% эластомера, от 0,05 до 15 мас.% олефинового полимерного вспомогательного вещества, функционализированного по меньшей мере, глицидильными функциональными группами.

Изобретение относится к водородной энергетике и топливным элементам, в частности к способам получения протонпроводящих полимерных мембран, используемых в твердополимерных топливных элементах. и к протонпроводящим полимерным мембранам с высокой проводимостью (до 10-1 См/см) и повышенной термостабильностью.

Изобретение относится к водородной энергетике и топливным элементам, в частности к способам получения протонпроводящих полимерных мембран, используемых в твердополимерных топливных элементах. и к протонпроводящим полимерным мембранам с высокой проводимостью (до 10-1 См/см) и повышенной термостабильностью.

Изобретение относится к полиолефиновому материалу, который образуют вытягиванием в твердом состоянии термопластичной композиции, содержащей непрерывную фазу, которая включает полиолефиновый матричный полимер и добавку нановключения и добавку микровключения, диспергированные в непрерывной фазе в форме дискретных доменов.

Изобретение относится к составу формовочного раствора для получения нетканого материала методом электроформования и может использоваться для получения водоупорной, воздухо-, паропроницаемой мембраны, а также регулирования комплекса эксплуатационных свойств мембранного материала. Композиция включает, мас.%: полиакрилонитрил 7-9, поливинилидендифторид 9-11, остальное - N,N-диметилацетамид и N,N-диметилформамид, при их соотношении 1:1.
Изобретение относится к области мембранной технологии, а именно к способам травления облученных полимерных пленок для получения пористых полупроницаемых мембран. Предположен способ травления фторполимерной трековой мембраны, включающий химическое травление облученной тяжелыми заряженными частицами фторполимерной пленки из поливинилиденфторида в водном растворе щелочи в присутствии перманганата калия, при этом фторполимерную пленку подвергают травлению в растворе, содержащем от 3,0 моль/л до 5,0 моль/л щелочи и от 0,2% до 1,0% массовой доли перманганата калия, травление осуществляют в автоклаве при давлении от 0,2 МПа до 0,8 МПа и температуре от 130°С до 180°С, при этом травление проводят не более 80 минут.
Наверх