Взрывоэмиссионный катод электронной пушки

Изобретение относится к сверхвысокочастотной технике и может быть использовано при разработке катодов электронных пушек в интересах создания мощных генераторов сверхвысокочастотного (СВЧ) излучения. Технический результат - повышение степени однородности создаваемой при взрывной эмиссии плазмы, обеспечение технологичности сборки и экономия расходного материала. На катододержателе установлено два защитных электрода, сборка, составленная из чередующихся элементов с эмитирующими и не эмитирующими поверхностями, размещена между защитными электродами. В сборке элементы с эмитирующей поверхностью образуют общую радиально симметричную поверхность, характеризующуюся способностью к возникновению взрывной эмиссии. Общая радиально симметричная поверхность сформирована из чередующихся в сборке элементов с эмитирующими поверхностями, выполненных в форме круговых колец, причем эти элементы сложены в сборку таким образом, что их кромки в сборке образуют поверхность в форме тела вращения, в сборке эти элементы чередуются с элементами с неэмитирующими поверхностями в форме дистанционных колец. При этом во взрывоэмиссионном катоде круговые кольца с эмитирующей поверхностью могут быть выполнены из вольфрама. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к сверхвысокочастотной технике и может быть использовано при разработке катодов электронных пушек в интересах создания мощных генераторов сверхвысокочастотного (СВЧ) излучения.

Явление взрывной эмиссии предполагает формирование плазменного слоя с поверхности материала (эмиттера), когда структура поверхности способна к взрывной эмиссии, то есть предполагает наличие взрывного фазового перехода твердого материала катода из конденсированного состояния в плотную плазму.

Это явление лежит в основе функционирования взрывоэмиссионных катодов электронных пушек. При подаче высокого напряжения на вакуумный промежуток происходит взрыв микроскопических острий (эмиссионные центры) на катоде под действием протекающего термоавтоэмиссионного тока, в результате чего образуется катодная плазма.

Известен источник электронов, катод в котором выполнен в виде металлической подложки с равномерно распределенными по площади остриями, работающий на явлении взрывной электронной эмиссии [Василевский М.А., Ройфе И.М., Энгелько В.И. Об особенностях работы взрывоэмиссионных многоострийных катодов в микросекундном диапазоне длительностей импульса. ЖТФ, 1981, т. 51, в. 6, с. 1183-1194 [1]).

Существенным недостатком этого источника является плохая пространственная однородность плотности катодной плазмы, обусловленная неоднородностью возбуждения взрывной электронной эмиссии и неоднородностью токов, протекающих через острия катода.

Известна электронная пушка, в которой использован взрывоэмиссионный катод, содержащий металлическую подложку (катододержатель) с закрепленными на ней инициаторами катодной плазмы, выполненными из графитовой ткани, слои которой отделены друг от друга ферромагнитной прокладкой (образующими сборку в форме цилиндра) с соответствующим выбором толщины ткани и прокладки (патент РФ №1143246, опубликовано 09.07.1995[2]). То есть, катод представляет собой закрепленную на катододержателе сборку из чередующихся элементов с эмитирующими - со структурой поверхности, способной к взрывной эмиссии (инициаторы катодной плазмы), и не эмитирующими поверхностями (со структурой поверхности, не способной к взрывной эмиссии), причем сборка, имеющая форму тела вращения, электрически связана катододержателем.

Недостатком данного прототипа является то, что при использовании ферромагнитной прокладки и графитовой ткани, с толщинами, выбранными в соответствии с заявленным в патенте соотношением, катодная плазма становится неоднородной по своему сечению, и величина электронного тока уменьшается за счет уменьшения площади эмиссионной поверхности, а также происходит снижение длительности импульса тока пучка электронов, при этом достигаемая плотность тока составляет не более 1000 А/см2. Существенным недостатком является сложность технологии изготовления катододержателя, на котором закреплена сборка в виде последовательного набора чередующихся отрезков графитовой ткани и ферромагнитных пластин, причем дальнейшее ее сворачивание в спираль приводит к дополнительным трудностям при изготовлении и эмиссионные центры при этом располагаются по азимуту относительно металлического катододержателя.

Известно также, что использование в электронной пушке (Гунин А.В., Ландль В.Ф., Коровин С.Д., Месяц Г.А. Взрывоэмиссионный катод с большим временем жизни для генерации мощного СВЧ-излучения. ЖТФ, 1999, т. 25, в. 22, 84-88. [3]) в качестве материала-эмиттера графитовой ткани, что имеет место в прототипе, с увеличением числа срабатываний ведет к аномально высокому расходу материала, что приводит к уменьшению числа эмиссионных центров и, соответственно, уменьшению мощности излучения и уменьшению ресурса работы. [3]. То есть, с этой точки зрения прототип обладает также недостатком, связанным с высоким расходом материала, формирующего структуру эмитирующей поверхности катода при большом числе включений электронной пушки.

Задача состоит в создании конструкции взрывоэмиссионного катода со стабильными амплитудно-временными характеристиками ускоряющего и токового импульса при работе электронной пушки.

Ожидаемым техническим результатом является повышение степени однородности создаваемой при взрывной эмиссии плазмы. Дополнительный технический результат состоит в обеспечении технологичности сборки и, кроме того, экономии материала, использование которого в составляющих сборки катода за счет структуры его поверхности способствует формированию процесса взрывной эмиссии.

Технический результат достигается тем, что в отличие от известного взрывоэмиссионного катода электронной пушки, содержащего закрепленную на катододержателе осесимметричную сборку из чередующихся элементов с эмитирующими - со структурой поверхности, способной к взрывной эмиссии, и не эмитирующими поверхностями, причем сборка, имеющая форму тела вращения, электрически связана с катододержателем, в заявляемом катоде на катододержателе установлено два защитных электрода, сборка, составленная из чередующихся элементов с эмитирующими и не эмитирующими поверхностями, размещена между защитными электродами, в сборке элементы с эмитирующей поверхностью образуют общую радиально симметричную поверхность, характеризующуюся способностью к возникновению взрывной эмиссии.

Кроме того, взрывоэмиссионный катод может отличаться тем, что вышеназванная общая радиально симметричная поверхность сформирована из чередующихся в сборке элементов с эмитирующими поверхностями, выполненных в форме круговых колец, причем эти элементы сложены в сборку таким образом, что их кромки в сборке образуют поверхность в форме тела вращения, в сборке эти элементы чередуются с элементами с не эмитирующими поверхностями в форме дистанционных колец.

При этом во взрывоэмиссионном катоде круговые кольца с эмитирующей поверхностью могут быть выполнены из вольфрама, что позволяет значительно снизить расход материала и, соответственно, обеспечить стабильность выходных параметров.

В разработанной конструкции катода в отличие от прототипа применено пространственное распределение эмиссионных центров по радиусу катода. Наличие такого разделения позволило ограничить рост тока с каждого отдельного эмиссионного центра и стабилизировать распределение тока пучка по периметру эмитирующих поверхностей круговых колец, что привело к стабильности образования катодной плазмы и обеспечило ее однородность по всей площади разработанного катода. Также использование пространственного разделения и снижение токовой нагрузки на каждый эмиссионный центр в разработанной конструкции катода позволяет существенно снизить процессы, влияющие на ухудшение эмиссионных свойств материала.

В конкретной конструкции взрывоэмиссионного катода, реализующей заявляемое техническое решение, выщеназванная общая радиально симметричная поверхность сформирована из чередующихся в осесимметричной сборке составных элементов с эмитирующими поверхностями, выполненных в форме круговых колец, причем эти элементы сложены в сборку таким образом, что их кромки в сборке образуют поверхность в форме тела вращения, в сборке эти элементы чередуются с элементами с не эмитирующими поверхностями в форме дистанционных колец. Использование круговых колец в разработанной конструкции катода позволяет обеспечить простоту технологической сборки, т.е. без дополнительных операций (без сворачивания как в прототипе) создавать радиально симметричную эмитирующую поверхность.

Взрывоэмиссионный катод может отличаться тем, что круговые кольца с эмитирующей поверхностью выполнены из вольфрама (тугоплавкого металла), что позволяет значительно снизить расход материала, по сравнению с графитом в прототипе (как указано в [3]), и, соответственно, обеспечить большее количество эмиссионных центров, что приводит к стабильности однородности плотности плазмы

Использование катода на явлении взрывной электронной эмиссии предложенной конструкции дает возможность на порядки повысить степень однородности образования катодной плазмы и амплитуду генерируемых токов электронных пучков и, соответственно, выходную СВЧ-мощность.

При этом сборка может быть осуществлена технологически просто. Ввиду того, что все элементы разработанного катода имеют форму тела вращения, отсутствует необходимость дополнительной центровки, для образования радиально симметричной эмиссионной поверхности.

Таким образом, построение взрывоэмиссионного катода по предлагаемой схеме позволит достичь следующих технических результатов: повысить степень однородности образования катодной плазмы, что обеспечит стабильные амплитудно-временные характеристики ускоряющего и токового импульса на протяжении всей работы электронной пушки, обеспечить простоту технологической сборки.

На фиг. 1 приведено схематичное изображение заявляемого катода электронной пушки, где:

1 - катододержатель,

2 - внутренний защитный электрод,

3 - внешний защитный электрод,

4 - дистанционные кольца с не эмитирующей поверхностью,

5 - круговые кольца с эмитирующей поверхностью,

6 - эмитирующая поверхность, образованная кромками круговыми кольцами

На фиг. 2 представлены типичные осциллограммы тока электронного пучка и напряжения на катоде при работе, где 7 - ток; 8 - напряжение.

Заявляемая конструкция взрывоэмиссионного катода реализована на практике. Катод, схематично представлен на фиг. 1: цилиндрический катододержатель 1, диаметром 20 мм, на катододержателе установлены - внутренний защитный электрод 2 и внешний защитный электрод 3, между электродами расположены дистанционные кольца 4 с не эмитирующей поверхностью, которые в совокупности с круговыми кольцами с эмитирующей поверхностью 5 образуют тело в форме тела вращения, в сборке элементы с эмитирующей поверхностью образуют общую радиально симметричную поверхность, характеризующуюся способностью к возникновению взрывной эмиссии, в частности, в форме усеченного конуса, В конкретном варианте реализации, дистанционные кольца имели диаметр от 46 мм до 41 мм и были изготовлены из нержавеющей стали 12Х18Н10Т. При этом дистанционные кольца могут иметь разную длину. Таким образом, сборка расположена между двумя защитными электродами, расположенными на катододержателе, что обеспечивает нахождение в контакте и электрическом И механическом с электродами всех элементов сборки.

Вся конструкция была размещена в вакуумном цилиндрическом объеме, который находится в продольном магнитном поле, формируемом с помощью соленоида. Питание взрывоэмиссионного катода осуществлялось от 10-ти каскадного высоковольтного источника импульсного напряжения. Сформированный импульс высокого напряжения отрицательной полярности подается на катодожержатель катод заявленной конструкции. В качестве материала для изготовления круговых колец, образующих радиально симметричную эмитирующую поверхность, может быть использован любой металл, в частности, был использован вольфрам. Вследствие сильного разогрева током автоэлектронной эмиссии происходит взрыв микроскопических острий (эмиссионных центров), расположенных по периметру круговых колец с эмитирующими поверхностями, и образование катодной плазмы, высокая однородность которой обеспечивается благодаря чередованию составляющих сборку элементов с заявленными свойствами. Отбор тока и формирование электронного пучка происходит с поверхности данной плазмы, при этом плотность тока электронного пучка составляет 1300 А/см2. На фигуре 2 представлена типичная осциллограмма фиксируемых напряжений на катоде и тока, отбираемого с поверхности образованной плазмы. При этом сборка была осуществлена достаточно просто и с экономией материала по сравнению с прототипом.

Таким образом, по результатам проведенных экспериментальных исследований было показано, что разработанная конструкция взрывоэмиссионного катода, радиально симметричная поверхность эмиссии которого сформирована из чередующихся в сборке элементов с эмитирующими (круговые кольца) и не эмитирующими (дистанционные кольца) поверхностями, (круговые кольца выполнены из вольфрама), позволяет повысить степень однородности образования катодной плазмы на протяжении всего времени работы электронной пушки, что обеспечивает стабильные амплитудно-временные характеристики ускоряющего и токового импульса и обеспечивает простоту технологической сборки и экономию расходного материала, даже при большом числе включений электронной пушки.

1. Взрывоэмиссионный катод электронной пушки, содержащий закрепленную на катододержателе осесимметричную сборку из чередующихся элементов с эмитирующими - со структурой поверхности, способной к взрывной эмиссии, и не эмитирующими поверхностями, причем сборка, имеющая форму тела вращения, электрически связана с катододержателем, отличающийся тем, что на катододержателе установлено два защитных электрода, сборка, составленная из чередующихся элементов с эмитирующими и не эмитирующими поверхностями, размещена между защитными электродами, в сборке элементы с эмитирующей поверхностью образуют общую радиально симметричную поверхность, характеризующуюся способностью к возникновению взрывной эмиссии.

2. Взрывоэмиссионный катод по п. 1, отличающийся тем, что вышеназванная общая радиально симметричная поверхность сформирована из чередующихся в сборке элементов с эмитирующими поверхностями, выполненных в форме круговых колец, причем эти элементы сложены в сборку таким образом, что их кромки в сборке образуют поверхность в форме тела вращения, в сборке эти элементы чередуются с элементами с не эмитирующими поверхностями в форме дистанционных колец.

3. Взрывоэмиссионный катод по п. 2, отличающийся тем, что круговые кольца с эмитирующей поверхностью выполнены из вольфрама.



 

Похожие патенты:

Изобретение относится к области электротехники, приборам вакуумной электроники, а именно к способу изготовления автоэмиссионных катодов на основе сборки из двух (шеврон) или трех (Z-сборка) микроканальных пластин (МКП). Способ изготовления катода на основе микроканальных пластин включает формирование катодной структуры нанесением углеродного слоя на поверхность первой МКП сборки, содержащей большое число микроструктур с каналами.

Изобретение относится к области квантовой электроники и может быть использовано при изготовлении газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров. Технический результат, заключающийся в расширении области применения способа с целью обеспечения повышенной стабильности характеристик катода в процессе эксплуатации моноблочных газовых лазеров, достигается в способе, согласно которому холодный катод газового лазера и составной анод устанавливают в резонатор кольцевого лазера, производят напайку на вакуумный пост, формируют тлеющий разряд постоянного тока между составным анодом и холодным катодом и производят ионное травление и окисление холодного катода с целью тренировки и стабилизации рабочих свойств холодного катода, при этом в качестве материала холодного катода используют сплав А1 Д16, а ионное травление и окисление холодного катода производят при давлении 170 Па в кислороде в течение десяти перенаполнений по пять минут при общем токе на холодном катоде 8 мА.

Изобретение относится к области электронной техники, а именно к области техники катодно-сеточных узлов (КСУ) с автоэмиссионными катодами для вакуумных электронных устройств, преимущественно приборов с микросекундным временем готовности. Технический результат - повышение точности расположения автоэмиссионных структур напротив отверстий в вытягивающей сетке, снижение автоэмиссионного тока вытягивающей сетки в рабочем режиме КСУ и повышение за счет этого его надежности и долговечности.

Изобретение относится к электронной технике, в частности к изготовлению катодно-сеточных узлов с матричными автоэмиссионными катодами для электровакуумных приборов, в том числе сверхвысокочастотного диапазона. Технический результат - повышение надежности и долговечности низковольтных катодно-сеточных узлов, состоящих из множества ячеек микронных размеров, содержащих острийные автоэлектронные эмиттеры и управляющую сетку с отверстиями, отделенную от подложки диэлектрическим зазором.

Изобретение относится к электронной технике, в частности к созданию катодно-сеточных узлов с автоэмиссионными катодами для вакуумных электронных устройств, в том числе мощных приборов СВЧ-диапазона с микросекундным временем готовности. Технический результат - повышение равномерности токоотбора от ячеек автоэмиссионного катода.

Изобретение относится к электронной технике, в частности к созданию катодно-сеточных узлов для вакуумных электронных приборов, в том числе мощных импульсных приборов СВЧ-диапазона с низковольтным сеточным управлением электронным пучком. Технический результат - повышение долговечности термоэмиссионного катода, улучшение ламинарности электронного потока, а также обеспечение минимального разброса углов наклона траекторий электронов.

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии многоострийных углеродных структур. Синтез материала многоострийного автоэмиссионного катода осуществляют в плазме микроволнового газового разряда из паров углеродосодержащих веществ, например этанола, в диапазоне параметров процесса, в котором реализуется переход от осаждения графитовых к осаждению алмазных пленок.

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Способ изготовления полевого эмиссионного элемента включает формирование на электропроводящей подложке диэлектрического слоя, формирование маски для травления диэлектрического слоя и электропроводящей подложки, формирование матрицы отверстий в диэлектрическом слое и углублений в подложке, формирование слоя катализатора для выращивания углеродных нанотрубок, удаление маски, формирование маски для травления слоя катализатора, жидкостное химическое травление слоя катализатора с образованием областей катализатора внутри углублений в электропроводящей подложке для последующего выращивания углеродных нанотрубок, удаление маски, плазмохимическое осаждение второго диэлектрического слоя, магнетронное осаждение вытягивающего слоя, формирование маски для травления структуры, состоящей из вытягивающего и второго диэлектрического слоев, над ранее сформированными областями катализатора внутри углублений в подложке для последующего выращивания углеродных нанотрубок, плазмохимическое анизотропное травление с образованием отверстий в вытягивающем и диэлектрическом слоях до формирования сквозного отверстия, удаление маски, изотропное газофазное травление второго диэлектрического слоя до вскрытия катализатора, парофазный синтез углеродных нанотрубок на катализаторе.

Изобретение относится к области электронной техники и может быть использовано при изготовлении изделий светоиндикаторной техники и эмиссионной электроники на основе автоэлектронной эмиссии многоострийных углеродных структур. Материал для изготовления многоострийного автоэмиссионного катода содержит стеклоуглерод с нанопорами, заполненными атомами цезия методом допирования с концентрацией атомов цезия, определяемой размерами нанопор.

Изобретение относится к приборам твердотельной и вакуумной электроники, в частности к автоэмиссионным элементам на основе системы Si-SiC-графен, используемых в качестве катодов: к диодам, к триодам и к устройствам на их основе. Технический результат - повышение тока автоэмиссии и временной стабильности этой величины, уменьшение рабочих напряжений в приборах вакуумной микроэлектроники на основе углеродосодержащих материалов и, как следствие, продление их срока службы.

Изобретение относится к электронной технике, в частности к производству мощных вакуумных электронных приборов СВЧ-диапазона. Согласно изобретению, эмиссионный материал представляет собой эвтектический сплав, полученный методом твердофазного синтеза или плавления смеси оксидов алюминия, иттрия и лантана в определенном соотношении по весу.
Наверх