Способ контроля глубины прокладки оптического кабеля

Использование: изобретение относится к измерительной технике и может быть использовано для контроля глубины прокладки оптического кабеля, в том числе кабеля без проводящих элементов. Сущность: согласно способу контроля глубины прокладки оптического кабеля создают направленное акустическое воздействие на кабель и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния оптического волокна, при этом сигнал акустического воздействия формируют от двух источников направленного акустического воздействия с сигналами на выходе, одинаковыми по уровню, но разными по частоте, расположенными вертикально над кабелем на известном расстоянии друг от друга так, что один источник направленного акустического воздействия располагается на поверхности над кабелем, а второй источник направленного акустического воздействия - над ним, строго вертикально на известном расстоянии H, по характеристике обратного рассеяния оптического волокна, измеренной помощью фазочувствительного импульсного оптического рефлектометра, определяют амплитуды сигналов на частотах источников акустического воздействия и оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности над кабелем h, которое рассчитывают по формуле

,

где - амплитуды сигналов на частотах источников акустического воздействия , измеряемые в месте воздействия, от источника акустического воздействия, расположенного на поверхности над кабелем и над ним на расстоянии H по вертикали соответственно. Технический результат: исключение возникновения погрешностей, обусловленных перемещениями источника направленного акустического воздействия, упрощение контроля положения источника направленного акустического воздействия, сокращение объема измерений. 1 ил.

 

Изобретение относится к измерительной технике и может быть использовано для контроля глубины прокладки оптического кабеля, в том числе кабеля без проводящих элементов.

Известны индукционные способы контроля глубины прокладки кабелей [1-8], заключающиеся в том, что к цепи «провод-земля» кабельной линии подключают генератор и измеряют параметры магнитного поля, возбуждаемого протекающим по проводнику данной цепи током, по которым и определяют глубину залегания кабеля. Данные способы неприменимы для контроля глубины прокладки оптического кабеля без проводящих элементов.

Известны способы определения местоположения трубопровода [9, 10], заключающиеся в том, что к трубопроводу подключают импульсный генератор, с помощью акустических датчиков над трубопроводом измеряют акустические сигналы, по параметрам которых определяют местоположение трубопровода. Данные способы не предназначены для контроля глубины прокладки оптических кабелей.

Наиболее близким к заявляемому является способ контроля глубины прокладки оптического кабеля, заключающийся в том, что создают направленное акустическое воздействие на кабель и с помощью фазочувствительного импульсного оптического рефлектометра дважды измеряют характеристики обратного рассеяния оптического волокна, предварительно когда источник направленного акустического воздействия размещают на поверхности над кабелем, а затем, когда источник направленного акустического воздействия размещают на известном расстояние H над поверхностью, и оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности над кабелем h, которое рассчитывают по формуле

, (1)

где амплитуды сигналов на частоте источника акустического воздействия в месте воздействия, определяемые по характеристикам обратного рассеяния оптического волокна, измеренным с помощью фазочувствительного импульсного оптического рефлектометра при размещении источника направленного акустического воздействия на поверхности над кабелем и над ней на высоте H соответственно. Недостатки способа связаны с необходимостью перемещения источника направленного акустического воздействия с поверхности над кабелем вертикально на высоту H. В полевых условиях достаточно сложно точно выдержать заданное расстояние H, не отклониться от вертикали и сохранить неизменным положение источника направленного акустического воздействия в горизонтальной плоскости. Погрешности в расположении источника направленного акустического воздействия приводят к погрешностям контроля глубины прокладки кабеля.

Сущностью предлагаемого изобретения является расширение области применения.

Эта сущность достигается тем, что согласно способу контроля глубины прокладки оптического кабеля создают направленное акустическое воздействие на кабель и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния оптического волокна, при этом сигнал акустического воздействия формируют от двух источников направленного акустического воздействия с сигналами на выходе одинаковыми по уровню, но разными по частоте, расположенными вертикально над кабелем на известном расстоянии друг от друга так, что один источник направленного акустического воздействия располагается на поверхности над кабелем, а второй источник направленного акустического воздействия – над ним, строго вертикально на известном расстоянии H, по характеристике обратного рассеяния оптического волокна измеренной помощью фазочувствительного импульсного оптического рефлектометра определяют амплитуды сигналов на частотах источников акустического воздействия и оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности над кабелем h, которое рассчитывают по формуле

, (1)

где амплитуды сигналов на частотах источников акустического воздействия , измеряемые в месте воздействия, от источника акустического воздействия расположенного на поверхности над кабелем и над ним на расстоянии H по вертикали, соответственно.

На чертеже представлена структурная схема устройства для реализации заявляемого способа.

Устройство включает проложенный ниже поверхности земли 1 оптический кабель 2 с оптическим волокном 3, фазочувствительный импульсный оптический рефлектометр 4, первый источник направленного акустического воздействия 5 и второй источник направленного акустического воздействия 6.

Оптическое волокно 3 проложенного ниже поверхности земли 1 оптического кабеля 2 подключено ко входу фазочувствительного импульсного оптического рефлектометра 4, первый источник направленного акустического воздействия 5 расположен на поверхности над кабелем, а второй источник направленного акустического воздействия 6 расположен вертикально над ним на известном расстоянии H.

Устройство работает следующим образом. Фазочувствительный импульсный оптический рефлектометр 4 измеряет характеристику обратного рассеяния оптического волокна 3, по которой определяют оценки амплитуд сигналов, наводимых в оптическом волокне в результате акустического воздействия в месте воздействия на частотах источников направленного акустического воздействия 5 и 6 - e1 и e2. После чего, оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности h, которое рассчитывают по формуле (1).

В отличие от известного способа, которым является прототип, при реализации заявляемого способа используется два источника направленного акустического воздействия, взаимное расположение которых и, соответственно, расстояние между которыми, фиксировано, что исключает погрешности, обусловленные перемещениями источника направленного акустического воздействия. При этом, упрощается по сравнению с прототипом, контроль отклонения положения источника направленного акустического воздействия от вертикали, при измерении сигналов наведенных источником направленного акустического воздействия, расположенного на расстоянии H от поверхности над кабелем, что снижает связанные с этим погрешности. Кроме того, в отличие от прототипа, для нахождения необходимых для контроля глубины прокладки оптического кабеля параметров достаточно измерения одной характеристики обратного рассеяния оптического волокна, что сокращает объем измерений по сравнению с прототипом в два раза. Все это, в целом, и позволяет расширить область применения заявляемого способа по сравнению с прототипом.

ЛИТЕРАТУРА

1. SU 98345.

2. SU 569984.

3. RU 2315337.

4. RU 2326343.

5. RU 2635402.

6. WO 2017/164765.

7. RU 2699379.

8. RU 2713104.

9. RU 2482515.

10. RU 127203.

11. RU 2743888.

Способ контроля глубины прокладки оптического кабеля, заключающийся в том, что создают направленное акустическое воздействие на кабель и с помощью фазочувствительного импульсного оптического рефлектометра измеряют характеристику обратного рассеяния оптического волокна, отличающийся тем, что сигнал акустического воздействия формируют от двух источников направленного акустического воздействия с сигналами на выходе, одинаковыми по уровню, но разными по частоте, расположенными вертикально над кабелем на известном расстоянии друг от друга так, что один источник направленного акустического воздействия располагается на поверхности над кабелем, а второй источник направленного акустического воздействия - над ним, строго вертикально на известном расстоянии H, по характеристике обратного рассеяния оптического волокна, измеренной помощью фазочувствительного импульсного оптического рефлектометра, определяют амплитуды сигналов на частотах источников акустического воздействия и оценивают глубину прокладки оптического кабеля по расстоянию от кабеля до поверхности над кабелем h, которое рассчитывают по формуле

,

где амплитуды сигналов на частотах источников акустического воздействия , измеряемые в месте воздействия, от источника акустического воздействия, расположенного на поверхности над кабелем и над ним на расстоянии H по вертикали соответственно.



 

Похожие патенты:

Изобретение относится к области радиотехники и предназначено для применения в системах радиосвязи, использующих режим с псевдослучайной перестройкой рабочей частоты. Техническим результатом заявляемого способа является совмещение технических процедур контроля пригодности рабочих частот и передачи информации систем радиосвязи.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки оптического кабеля. Технический результат состоит в расширении области применения.

Изобретение относится к области радиотехники и предназначено для применения в радиотехнических системах, в которых помехозащищенность определяется структурной скрытностью используемых в них радиосигналов. Техническим результатом заявляемого способа является повышение структурной скрытности спектрального представления формируемого результирующего сигнала.

Изобретение относится к измерительной технике и может быть использовано для поиска трассы прокладки и определения глубины прокладки пакета микротрубок без металлических элементов на волоконно-оптической линии связи, в частности на транспортной многоканальной коммуникации с полностью диэлектрическим оптическим кабелем.

Изобретение относится к области радиотехники. Технический результат заключается в повышении точности определения состояния передающего тракта канала связи.

Изобретение относится к области радиотехники и предназначено для применения в системах передачи данных, использующих частотно-адаптивный режим работы или режим с псевдослучайной перестройкой рабочей частоты. Технический результат заключается в повышении скорости передачи данных в помехозащищенной радиолинии с псевдослучайной перестройкой рабочей частоты путем определения вида деструктивного воздействия.

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве источника высокостабильных сигналов. Групповой водородный хранитель времени и частоты содержит N групп блоков из последовательно соединенных квантового генератора, подключенного к смесителю частоты, вторым входом соединенный с умножителем частоты, выход смесителя частоты через усилитель промежуточной частоты подключен к входу фазового детектора, второй вход которого соединен с выходом синтезатора частоты, кварцевый генератор, параллельно соединенный с входами умножителей частоты и синтезаторами частоты N групп блоков, а сумматор напряжения включен между выходами фазовых детекторов групп блоков, а выход сумматора соединен с входом кварцевого генератора.

Предлагается устройство (1) для измерения электрической мощности, потребленной рельсовым транспортным средством из высоковольтной линии электропитания. Устройство включает токовый датчик (5-7), соединенный с указанной линией (L) электропитания, резистивный делитель (23) напряжения, подсоединенный между линией (L) электропитания и электрическим выводом (22; 32c) заземления, первые обрабатывающие устройства (9-13), соединенные с токовым датчиком (5-7) и выполненные с возможностью генерирования сигналов или данных, отражающих интенсивность тока, потребленного из линии (L) электропитания, и вторые обрабатывающие устройства (41-45), соединенные с выходом (28) делителя (23) напряжения и выполненные с возможностью генерирования сигналов или данных, отражающих напряжение линии (L) электропитания.

Использование: в области электрической связи для передачи данных повышенной надежности. Технический результат - обеспечение высоконадежного доведения команд управления до абонента.

Группа изобретений относится к кабельной промышленности и может быть использована для определения температурного коэффициента фазы (ТКФ) и температурного коэффициента затухания (ТКЗ) кабельных сборок. Способ осуществляют при помощи устройства для климатических испытаний, включающего климатическую камеру, векторный анализатор цепей, а также подключенные через цепи управления, коммутации и передачи данных компьютер с установленным ПО и блок управления.

Изобретение относится к измерительной технике и предназначено для определения трассы прокладки оптоволоконного кабеля, проложенного в кабельной канализации и, в частности, по технологии «микрокабель в микротрубке» в транспортной многоканальной коммуникации. Технической задачей заявленного способа является разработка способа маркировки оптоволоконного кабеля.
Наверх