Способ и устройство для диагностирования передающего тракта канала связи

Изобретение относится к области радиотехники. Технический результат заключается в повышении точности определения состояния передающего тракта канала связи. Устройство содержит набор блоков контроля параметров элементов передающего тракта канала связи, которые выполнены с возможностью измерения средних значений параметров контролируемых элементов передающего тракта канала связи, каждый из которых последовательно соединен с блоком вычисления отклонений измеряемых параметров, блоком нормировки отклонений измеряемых параметров и сумматором, второй информационный выход генератора тестовых сообщений соединен с блоком хранения эталонных значений комплексного параметра состояния передающего тракта, блоками вычисления и хранения статистических характеристик и блоками хранения коэффициентов нормирования, при этом выходы блоков вычисления и хранения статистических характеристик подключены к соответствующим блокам вычисления отклонений измеряемых параметров, а выходы блоков хранения коэффициентов нормирования подключены к соответствующим блокам нормировки отклонений измеряемых параметров, выходы сумматора и блока хранения эталонных значений комплексного параметра состояния передающего тракта связи подключены к блоку сравнения, выход которого подключен к пользовательскому интерфейсу. 2 н. и 8 з.п. ф-лы, 1 ил.

 

Изобретение относится к области радиотехники, а именно к контролю технического состояния элементов передающих трактов каналов связи. [H04B 3/46]

Сеть связи, как правило, состоит из каналов связи и коммутационных устройств, а также абонентского оборудования для доступа пользователей к ресурсам сети. При этом, для эффективного управления информационными потоками необходимо точно знать техническое состояния элементов оборудования сетевых устройств и каналов связи. Для повышения коэффициента готовности сетевого и каналообразующего оборудования необходимо своевременно выявлять и устранять потенциальные неисправности данного оборудования. Поэтому одной из важных задач управления сетями связи является задача диагностики состояния сетевого и каналообразующего оборудования.

Диагностика канала связи в целом осуществляется на основе анализа состояний его составных частей. При этом анализу подлежат различные по физической природе и функциональному предназначению параметры работы основных блоков оборудования, что порой затрудняет формирование комплексного показателя состояния канала связи и его использование при принятии решений в той или иной ситуации.

Таким образом, из уровня техники известно УСТРОЙСТВО ДИАГНОСТИКИ СОСТОЯНИЯ АППАРАТУРЫ ЦИФРОВЫХ СИСТЕМ ПЕРЕДАЧИ [SU 1734219 A1, опубл. 15.05.1992 г.], реализующее способ диагностики состояния аппаратуры цифровых систем передачи, заключающийся в формировании тестовой псевдослучайной последовательности длительностью 158400 тактовых импульсов и подаче ее на вход передающего тракта, ее преобразовании по установленному алгоритму преобразования сигнала, последующем ослаблении и смешивании с сигналом шума, коммутации на вход приемного тракта, ее обратном преобразовании, выделении переданной псевдослучайной последовательности на выходе приемного тракта, ее сравнении с исходным тестом путем подсчета искаженных импульсов. По заранее установленному алгоритму, при превышении допустимой величины искаженных импульсов N>Мдоп, где N - число искаженных импульсов, Кдоп - допустимое число искаженных импульсов, производится повторная передача тестовой псевдослучайной последовательности, при этом могут вводиться новые и (или) исключаться ранее установленные преобразования псевдослучайной последовательности в зависимости от соотношения N и Кдоп, до тех пор, пока не будет определен неисправный блок аппаратуры цифровых систем передачи.

Также из уровня техники известен СПОСОБ И УСТРОЙСТВО ДИАГНОСТИКИ СОСТОЯНИЯ АППАРАТУРЫ ЦИФРОВЫХ СИСТЕМ ПЕРЕДАЧИ [RU 2132594 C1, опубл. 27.06.1999 г.], заключающийся в формировании псевдослучайной последовательности, подаче ее на вход передающего тракта, ее преобразовании по установленному алгоритму преобразования сигнала, последующем ослаблении и смешивании ее с сигналом шума, коммутации на вход приемного тракта, ее обратном преобразовании, выделении восстановленной псевдослучайной последовательности, дополнительно сигналы псевдослучайной последовательности Fi(t) выделяют после каждого ее i-го преобразования, где Fi(t) - выделенная псевдослучайная последовательность после i-го преобразования, i=1, 2, 3, ..., R, R - число преобразований псевдослучайной последовательности согласно установленного алгоритма преобразования.

К недостаткам указанных аналогов можно отнести низкую достоверность диагностирования из-за того, что не учитывается вклад в оценку работоспособности отдельных элементов системы связи и при этом результат диагностики зависит от искусственного аддитивного шума, являющимся случайным процессом.

Наиболее близким по технической сущности является СПОСОБ ДИАГНОСТИРОВАНИЯ И ОБЕСПЕЧЕНИЯ ТЕХНИЧЕСКОЙ ГОТОВНОСТИ ЭЛЕМЕНТОВ СЕТЕЙ СВЯЗИ [RU 2325031 C2, опубл. 20.05.2008 г.], заключающийся в формировании псевдослучайной последовательности, подаче ее на вход передающего тракта, ее преобразовании по установленному алгоритму преобразования сигнала, последующем ослаблении и смешивании ее с сигналом шума, коммутации на вход приемного тракта, ее обратном преобразовании, выделении восстановленной псевдослучайной последовательности, сигналы псевдослучайной последовательности Fi(t) выделяют после каждого ее i-го преобразования, где Fi(t) - выделенная псевдослучайная последовательность после i-го преобразования, i=1, 2, 3, ..., R, R - число преобразований псевдослучайной последовательности согласно установленного алгоритма преобразования, отличающийся тем, что из принятого информационного сигнала выделяется и вычисляется ряд хi параметров диагностируемой аппаратуры, где i=1, 2, 3, ..., n - число параметров, производится вычисление значений квадрата разности (хii)2 измеренных хi и эталонных μi параметров диагностируемой аппаратуры, рассчитываются дисперсии D(x) измеряемых и D(μ) эталонных параметров диагностируемой аппаратуры, производится вычисление значения параметра r, характеризующего техническое состояние диагностируемой аппаратуры, сравниваются значения параметра r с эталонным значением rэт, по полученным результатам определяется техническое состояние элементов сетей связи, а также осуществляется прогнозирование технического состояния элементов сетей связи на определенный промежуток времени.

Основной технической проблемой прототипа является то, что в качестве эталонного (тестового) сообщения используется псевдослучайная последовательность, которая не учитывает особенность структуры передаваемых сообщений, которая различается для сообщений, содержащих текст, аудио или видео и для одинакового состояния элементов системы связи может отличаться реальная оценка качества связи, что снижает точность определения состояния канала связи для передачи разнородных сообщений, кроме того, текущие параметры элементов аппаратуры системы связи носят случайный характер, что не учитывается в прототипе и в совокупности с тем, что разные элементы системы связи могут вносить в оценку работоспособности разный вклад также снижает точность определения состояния системы связи.

Целью изобретения является устранение недостатков прототипа.

Техническим результатом изобретения является повышение точности определения состояния передающего тракта канала связи.

Указанный технический результат изобретения достигается за счет того, что способ диагностирования передающего тракта канала связи, характеризующийся тем, что формируют и подают на вход передающего тракта канала связи тестовое информационное сообщение, считывают параметры элементов передающего тракта канала связи, после чего вычисляют значение параметра, характеризующего техническое состояние передающего тракта канала связи и сравнивают полученное значение с эталонным, на основе которого определяют оценку технического состояния канала связи, отличающийся тем, что первоначально на пользовательском интерфейсе выбирают тип тестового информационного сообщения – и отправляют его в генератор тестовых сообщений, который в соответствии с выбранным типом тестового сообщения отправляет на вход передающего тракта канала связи тестовое информационное сообщение , где – тип тестового информационного сообщения, – порядковый номер тестового информационного сообщения, при этом генератор тестовых сообщений также формирует информационный сигнал с идентификаторами тестового информационного сообщения и отправляет его в блок хранения эталонных значений комплексного параметра состояния передающего трата канала связи, в блоки вычисления и хранения статистических характеристик и в блоки хранения коэффициентов нормирования, в передающем тракте канала связи тестовое информационное сообщение проходит через его элементы и последовательно преобразуется в соответствии с передающим трактом канала связи, при этом блоки контроля параметров элементов передающего тракта канала связи вычисляют средние значения параметров контролируемых элементов передающего тракта канала связи – , где – порядковый номер блока контроля, и направляют их в соответствующие блоки вычисления отклонений измеряемых параметров, которые с учетом математического ожиданий и дисперсий контролируемых параметров для тестового информационного сообщения и блока контроля, поступающие из блоков вычисления и хранения статистических характеристик вычисляют , после чего вычисленные значения отклонений измеряемых параметров передают в соответствующие блоки нормировки отклонений измеряемых параметров, которые вычисляют нормированные значения отклонений измеряемых параметров , где – коэффициенты нормирования для блока контроля типа тестового информационного сообщения , затем в сумматоре вычисляют значение комплексного параметра состояния передающего тракта канала связи и передают его в блок сравнения, который производит его сравнение с эталонными значениями комплексного параметра состояния передающего тракта канала связи и для типа тестового информационного сообщения и передает результат сравнения на пользовательский интерфейс.

В частности, первоначально в генераторе тестовых сообщений сохраняют тестовых информационных сообщений для каждого типа , при этом тип тестового информационного сообщения определяется видом передаваемой информации, например, меандр, меандр с изменяемой длительностью нулей и единиц, текст, аудио или видео.

В частности, в заведомо исправном состоянии передающего тракта канала связи многократно последовательно передают тестовые информационные сообщения для вычисления математических ожиданий и дисперсий контролируемых параметров, при этом блоки контроля параметров элементов передающего тракта канала связи вычисляют средние значения параметров контролируемых элементов передающего тракта канала связи – и передают эти значения в блоки вычисления и хранения статистических характеристик.

В частности, для контролируемых элементов передающего тракта канала связи в зависимости типа сообщения определяют коэффициенты нормирования , которые учитывают вклад каждого элемента канала передающего тракта связи в общую оценку комплексного параметра состояния передающего тракта канала связи и сохраняют их в соответствующих блоках хранения коэффициентов нормирования.

В частности, для каждого типа сообщений определяют эталонные значения комплексного параметра состояния передающего тракта канала связи и и сохраняют их в блоке хранения эталонных значений комплексного параметра состояния передающего тракта канала связи.

В частности, если измеренное значение комплексного параметра состояния передающего тракта канала связи – находится в пределе от 0 до , тогда блок сравнения передает на пользовательский интерфейс статус «передающий тракт канала связи работоспособен», если находится в пределе от до , тогда блок сравнения передает на пользовательский интерфейс статус «передающий тракт канала связи в предотказовом состоянии» и если больше , тогда блок сравнения передает на пользовательский интерфейс статус «передающий тракт канала связи не работоспособен».

Указанный технический результат изобретения достигается за счет того, что устройство для диагностирования передающего тракта канала связи, содержащее, генератор тестовых сообщений, информационный выход которого выполнен с возможностью коммутации с входом передающего тракта канала связи, блок контроля параметров элементов передающего тракта канала связи и блок сравнения, отличающееся тем, что содержит набор блоков контроля параметров элементов передающего тракта канала связи, которые выполнены с возможностью измерения средних значений параметров контролируемых элементов передающего тракта канала связи, каждый из которых последовательно соединен с блоком вычисления отклонений измеряемых параметров, блоком нормировки отклонений измеряемых параметров и сумматором, второй информационный выход генератора тестовых сообщений соединен с блоком хранения эталонных значений комплексного параметра состояния передающего тракта, блоками вычисления и хранения статистических характеристик и блоками хранения коэффициентов нормирования, при этом выходы блоков вычисления и хранения статистических характеристик подключены к соответствующим блокам вычисления отклонений измеряемых параметров, а выходы блоков хранения коэффициентов нормирования подключены к соответствующим блокам нормировки отклонений измеряемых параметров, выход сумматора и блока хранения эталонных значений комплексного параметра состояния передающего тракта связи подключены к блоку сравнения, выход которого подключен к пользовательскому интерфейсу.

В частности, один из блоков контроля параметров элементов передающего тракта канала связи выполнен с возможностью вычисления средней длительности импульсов для контроля кодера передающего тракта канала связи.

В частности, один из блоков контроля параметров элементов передающего тракта канала связи выполнен с возможностью вычисления среднего значения опорной частоты для контроля модулятора передающего тракта канала связи.

В частности, один из блоков контроля параметров элементов передающего тракта канала связи выполнен с возможностью вычисления среднего значения коэффициента усиления для контроля усилителя передающего тракта канала связи.

Краткое описание чертежей.

На фиг.1 показана блок-схема передающего тракта канала связи и устройство для диагностирования его технического состояния.

На фигуре обозначено: 1 – источник информационных сообщений, 2 – кодер, 3 – модулятор, 4 – блок формирования выходного сигнала, 5 – усилитель сигнала, 6 – антенно-фидерное устройство, 7 – генератор тестовых сообщений, 8 – пользовательский интерфейс, 9 – блок вычисления средней длительности импульсов, 10 – блок вычисления среднего значения опорной частоты, 11 – блок вычисления среднего значения коэффициента усиления, 12 – блоки вычисления и хранения статистических характеристик, 13 – блоки вычисления отклонений измеряемых параметров, 14 – блоки хранения коэффициентов нормирования, 15 – блоки нормировки отклонений измеряемых параметров, 16 – сумматор, 17 – блок сравнения, 18 – блок хранения эталонных значений комплексного параметра состояния передающего тракта канала связи.

Осуществление изобретения.

В одном из вариантов реализации настоящего изобретения устройство для диагностирования передающего тракта канала связи применяется совместно с передающим трактом канала связи, который содержит последовательно соединенные источник информационных сообщений 1, кодер 2, модулятор 3, блок формирования выходного сигнала 4, усилитель сигнала 5 и антенно-фидерное устройство 6.

К кодеру 2 также подключен информационный выход генератора тестовых сообщений 7, к управляющему входу которого подключен пользовательский интерфейс 8. Выход кодера 2 также подключен к блоку вычисления средней длительности импульсов 9, выход модулятора 3 также подключен к блоку вычисления среднего значения опорной частоты 10, а выходы блока формирования выходного сигнала 4 и усилителя сигнала 5 подключены к блоку вычисления среднего значения коэффициента усиления 11.

Второй информационный выход генератора тестовых сообщений 7 подключен к блокам вычисления и хранения статистических характеристик 12, которые, в свою очередь, подключены к блокам вычисления отклонений измеряемых параметров 14, при этом к каждому из указанных блоков соответственно подключен выход блока вычисления средней длительности импульсов 9, блока вычисления среднего значения опорной частоты 10 и блока вычисления коэффициента усиления 11.

Также второй информационный выход генератора тестовых сообщений 7 подключен к блокам хранения коэффициентов нормирования 14, выходы которых и выходы блоков 13 подключены к блокам нормировки отклонений измеряемых параметров 15.

Выходы блоков нормировки отклонений измеряемых параметров 15 подключены к сумматору 16, выход которого подключен к блоку сравнения, 17, к которому также подключен выход блока хранения эталонных значений комплексного параметра состояния передающего тракта канала связи 18, к которому подключен второй выход генератора тестовых сообщений 7.

Выход пользовательского интерфейса 8 подключен к генератору тестовых сообщений 7 и к источнику информационных сообщений 1.

В качестве пользовательского интерфейса 8 может выступать панель оператора передающего тракта канала связи, стандартный дисплей или дисплей с сенсорным вводом.

Выход блока вычисления средней длительности импульсов 9, блока вычисления среднего значения опорной частоты 10 и блока вычисления среднего значения коэффициента усиления 11 могут быть подключены к соответствующим блокам вычисления и хранения статистических характеристик 12.

Для приведения устройства для диагностирования передающего тракта канала связи в исходное состояние первоначально в генераторе тестовых сообщений 7 сохраняют тестовых информационных сообщений для каждого типа , при этом тип тестового информационного сообщения определяется видом передаваемой информации, например, меандр, меандр с изменяемой длительностью нулей и единиц, текст, аудио или видео.

После этого в заведомо исправном состоянии передающего тракта канала связи многократно последовательно передают тестовые информационные сообщения из генератора тестовых сообщений 7 для вычисления математического ожидания и дисперсии значений контролируемых параметров, для чего блоки контроля параметров элементов передающего тракта канала связи 9, 10 и 11 вычисляют средние значения параметров контролируемых элементов передающего тракта канала связи и передают эти значения в блоки вычисления и хранения статистических характеристик 12.

Затем перед диагностированием передающего тракта канала связи определяют и сохраняют в блоках 14 коэффициенты нормирования в зависимости от типов тестовых информационных сообщений и типов контролируемых элементов передающего тракта канала связи, с целью определения вклада каждого элемента канала передающего тракта связи в общую оценку комплексного параметра состояния передающего тракта канала связи.

Кроме того, перед диагностированием передающего тракта канала связи определяют и сохраняют в блоке 18 эталонные значения комплексного параметра состояния передающего тракта канала связи и в зависимости от типа тестового информационного сообщения.

Способ диагностирования передающего тракта канала связи реализуется следующим образом.

Перед тем как оператор через пользовательский интерфейс 8 осуществит выдачу в передающий тракт канала связи информационного сообщения, сформированного в источнике информационных сообщений 1, он производит технического состояния передающего тракта канала связи для передачи необходимого сообщения.

Для чего оператор на пользовательском интерфейсе выбирают тип тестового информационного сообщения – и отправляют его в генератор тестовых информационных сообщений 7, который в соответствии с выбранным типом тестового сообщения отправляет на вход передающего тракта канала связи тестовое информационное сообщение , где – тип тестового информационного сообщения, – порядковый номер тестового информационного сообщения, при этом генератор тестовых сообщений 7 также формирует второй информационный сигнал с идентификаторами тестового информационного сообщения и отправляет его в блок хранения эталонных значений комплексного параметра состояния передающего трата канала связи 18, в блоки вычисления и хранения статистических характеристик 12 и в блоки хранения коэффициентов нормирования 14, в передающем тракте канала связи тестовое информационное сообщение проходит через его элементы – кодер 2, модулятор 3, блок формирования выходного сигнала 4, усилитель сигнала 5 и антенно-фидерное устройство 6.

Тестовое информационное сообщение в кодере 2 преобразуют в избыточную последовательность в соответствии с принятым алгоритмом кодирования информации, при этом во время передачи тестового информационного сообщения блок 9 вычисляет среднюю длительность импульсов избыточной последовательности – .

После этого избыточная последовательность символов кодовой комбинации подается на вход модулятора 3, на выходе которого формируется гармоническое колебание с определёнными параметрами в соответствии с принятым способом модуляции, при этом блок 10 вычисляет среднее значение опорной частоты – .

С выхода блока формирования выходного сигнала 4 подготовленный к передаче по физической линии связи аналоговый сигнал поступает на вход усилителя сигнала 5, с выхода которого радиосигнал подается на вход антенно-фидерного устройства 6, в котором радиосигнал тестовой информационной последовательности подаётся на эквивалент нагрузки антенны (на чертежах не указано) и в эфир не излучается, при этом сигналы с входа и выхода усилителя 5 поступают в блок 11, который вычисляет среднее значение коэффициента усиления – .

После завершения передачи тестового информационного сообщения блок вычисления средней длительности импульсов 9, блок вычисления среднего значения опорной частоты 10 и блок вычисления среднего значения коэффициента усиления 11 передают вычисленные средние значения . и в соответствующие блоки вычисления отклонений измеряемых параметров 13.

В блоках 13 вычисляют значения отклонений измеряемых параметров по следующим соотношениям: , , и передают их в блоки нормировки отклонений измеряемых параметров 15, при этом значения математического ожидания и дисперсии поступают в блоки 13 из соответствующих блоков вычисления и хранения статистических характеристик 12.

В блоках 15 производят нормировку отклонений измеряемых параметров по следующим соотношениям: , , и передают их в сумматор 16, при этом значения – коэффициенты нормирования для блока контроля типа тестового информационного сообщения поступают в блоки 15 из соответствующих блоков хранения коэффициентов нормирования 14.

Сумматор 16 вычисляет значение комплексного параметра состояния передающего тракта канала связи по соотношению и передают его в блок сравнения 17, который производит его сравнение с эталонными значениями комплексного параметра состояния передающего тракта канала связи и для типа тестового информационного сообщения и передает результат сравнения на пользовательский интерфейс 8, при этом значения и поступают в блок сравнения 17 из блока хранения эталонных значений комплексного параметра состояния передающего тракта канала связи 18.

Если измеренное значение комплексного параметра состояния передающего тракта канала связи – находится в пределе от 0 до , тогда блок сравнения 17 передает на пользовательский интерфейс 8 статус «передающий тракт канала связи работоспособен», после чего оператор отправляет в передающий тракт канала связи информационное сообщение.

Если измеренное значение комплексного параметра состояния передающего тракта канала связи – в находится в пределе от до , тогда блок сравнения 17 передает на пользовательский интерфейс 8 статус «передающий тракт канала связи в предотказовом состоянии», после чего оператор может отправить сообщение, но затем ему необходимо будет выявить и устранить неисправности передающего тракта канала связи.

Если измеренное значение комплексного параметра состояния передающего тракта канала связи – больше , тогда блок сравнения 17 передает на пользовательский интерфейс 8 статус «передающий тракт канала связи не работоспособен» , после чего оператору надо будет выявить и устранить неисправности передающего тракта канала связи.

Указанные выше элементы и блоки устройства для диагностирования передающего тракта канала связи полностью охарактеризованы на функциональном уровне и описываемая форма реализации предполагает использование логических элементов или программируемого (настраиваемого) многофункционального средства. Таким образом данные признаки имеют материальную сущность и действия осуществляются над материальными объектами.

Для указанного примера реализации заявленных технических решений характеристики передающего тракта канала связи (средняя длительность импульсов на выходе кодера канала, значение опорной частоты модулированного колебания и значения коэффициента усиления мощности радиосигнала) являются случайными величинами. Поэтому при оценивании их на интервале тестирования получают оценки данных случайных величин. Для оценивания работоспособности передающего тракта канала связи измеряются технические характеристики его основных блоков (среднее значение длительности импульсов на выходе кодера канала, среднее значение опорной частоты модулированного колебания и среднее значение коэффициента усиления мощности радиосигнала). В процессе эксплуатации передающего тракта канала связи измеряемые величины могут изменять свои значения. При этом для правильной работы канала связи отклонения измеряемых величин от их среднего значения не должно превышать определённых пределов. В случае, если отклонения измеренных значений указанных технических характеристик приближаются к критическому порогу, то необходимо производить регламентное обслуживание блоков передающего тракта.

Диагностика состояния передающего тракта канала связи производится с помощью тестовых последовательностей. Тестовых последовательностей может быть несколько типов в зависимости от вида передаваемой информации, например, меандр, меандр с изменяемой длительностью нулей и единиц, текст, аудио или видео. Соответственно, коэффициенты нормировки отклонений измеряемых параметров от их среднего значения, а также сами математические ожидания и дисперсии рассчитываются для каждой тестовой последовательности отдельно.

Коэффициенты нормировки отклонений измеряемых параметров введены вследствие неодинаковой значимости измеряемых характеристик для состояния передающего тракта канала связи.

Таким образом, применение описанного выше способа и устройства для диагностирования передающего тракта канала связи позволит на этапе эксплуатации более точно отслеживать динамику контролируемых параметров, а также своевременно принимать меры по выявлению и предупреждению скрытых отказов техники связи, за счет чего достигается заявленный технический результат изобретения.

1. Способ диагностирования передающего тракта канала связи, характеризующийся тем, что формируют и подают на вход передающего тракта канала связи тестовое информационное сообщение, считывают параметры элементов передающего тракта канала связи, после чего вычисляют значение параметра, характеризующего техническое состояние передающего тракта канала связи, и сравнивают полученное значение с эталонным, на основе которого определяют оценку технического состояния канала связи, отличающийся тем, что первоначально на пользовательском интерфейсе выбирают тип тестового информационного сообщения – и отправляют его в генератор тестовых сообщений, который в соответствии с выбранным типом тестового сообщения отправляет на вход передающего тракта канала связи тестовое информационное сообщение , где – тип тестового информационного сообщения, – порядковый номер тестового информационного сообщения, при этом генератор тестовых сообщений также формирует информационный сигнал с идентификаторами тестового информационного сообщения и отправляет его в блок хранения эталонных значений комплексного параметра состояния передающего тракта канала связи, в блоки вычисления и хранения статистических характеристик и в блоки хранения коэффициентов нормирования, в передающем тракте канала связи тестовое информационное сообщение проходит через его элементы и последовательно преобразуется в соответствии с передающим трактом канала связи, при этом блоки контроля параметров элементов передающего тракта канала связи вычисляют средние значения параметров контролируемых элементов передающего тракта канала связи – , где – порядковый номер блока контроля, и направляют их в соответствующие блоки вычисления отклонений измеряемых параметров, которые с учетом математического ожиданий и дисперсий контролируемых параметров для тестового информационного сообщения и блока контроля, поступающих из блоков вычисления и хранения статистических характеристик, вычисляют , после чего вычисленные значения отклонений измеряемых параметров передают в соответствующие блоки нормировки отклонений измеряемых параметров, которые вычисляют нормированные значения отклонений измеряемых параметров , где – коэффициенты нормирования для блока контроля типа тестового информационного сообщения , затем в сумматоре вычисляют значение комплексного параметра состояния передающего тракта канала связи и передают его в блок сравнения, который производит его сравнение с эталонными значениями комплексного параметра состояния передающего тракта канала связи и для типа тестового информационного сообщения и передает результат сравнения на пользовательский интерфейс.

2. Способ по п. 1, отличающийся тем, что первоначально в генераторе тестовых сообщений сохраняют тестовых информационных сообщений для каждого типа , при этом тип тестового информационного сообщения определяется видом передаваемой информации, например меандр, меандр с изменяемой длительностью нулей и единиц, текст, аудио или видео.

3. Способ по п. 1, отличающийся тем, что в заведомо исправном состоянии передающего тракта канала связи многократно последовательно передают тестовые информационные сообщения для вычисления математических ожиданий и дисперсий контролируемых параметров, при этом блоки контроля параметров элементов передающего тракта канала связи вычисляют средние значения параметров контролируемых элементов передающего тракта канала связи – и передают эти значения в блоки вычисления и хранения статистических характеристик.

4. Способ по п. 1, отличающийся тем, что для контролируемых элементов передающего тракта канала связи в зависимости от типа сообщения определяют коэффициенты нормирования , которые учитывают вклад каждого элемента канала передающего тракта связи в общую оценку комплексного параметра состояния передающего тракта канала связи и сохраняют их в соответствующих блоках хранения коэффициентов нормирования.

5. Способ по п. 1, отличающийся тем, что для каждого типа сообщений определяют эталонные значения комплексного параметра состояния передающего тракта канала связи и и сохраняют их в блоке хранения эталонных значений комплексного параметра состояния передающего тракта канала связи.

6. Способ по п. 1, отличающийся тем, что если измеренное значение комплексного параметра состояния передающего тракта канала связи – находится в пределе от 0 до , тогда блок сравнения передает на пользовательский интерфейс статус «передающий тракт канала связи работоспособен», если находится в пределе от до , тогда блок сравнения передает на пользовательский интерфейс статус «передающий тракт канала связи в предотказовом состоянии», и если больше , тогда блок сравнения передает на пользовательский интерфейс статус «передающий тракт канала связи не работоспособен».

7. Устройство для диагностирования передающего тракта канала связи, содержащее генератор тестовых сообщений, информационный выход которого выполнен с возможностью коммутации с входом передающего тракта канала связи, блок контроля параметров элементов передающего тракта канала связи и блок сравнения, отличающееся тем, что содержит набор блоков контроля параметров элементов передающего тракта канала связи, которые выполнены с возможностью измерения средних значений параметров контролируемых элементов передающего тракта канала связи, каждый из которых последовательно соединен с блоком вычисления отклонений измеряемых параметров, блоком нормировки отклонений измеряемых параметров и сумматором, второй информационный выход генератора тестовых сообщений соединен с блоком хранения эталонных значений комплексного параметра состояния передающего тракта, блоками вычисления и хранения статистических характеристик и блоками хранения коэффициентов нормирования, при этом выходы блоков вычисления и хранения статистических характеристик подключены к соответствующим блокам вычисления отклонений измеряемых параметров, а выходы блоков хранения коэффициентов нормирования подключены к соответствующим блокам нормировки отклонений измеряемых параметров, выходы сумматора и блока хранения эталонных значений комплексного параметра состояния передающего тракта связи подключены к блоку сравнения, выход которого подключен к пользовательскому интерфейсу.

8. Устройство по п. 7, отличающееся тем, что один из блоков контроля параметров элементов передающего тракта канала связи выполнен с возможностью вычисления средней длительности импульсов для контроля кодера передающего тракта канала связи.

9. Устройство по п. 7, отличающееся тем, что один из блоков контроля параметров элементов передающего тракта канала связи выполнен с возможностью вычисления среднего значения опорной частоты для контроля модулятора передающего тракта канала связи.

10. Устройство по п. 7, отличающееся тем, что один из блоков контроля параметров элементов передающего тракта канала связи выполнен с возможностью вычисления среднего значения коэффициента усиления для контроля усилителя передающего тракта канала связи.



 

Похожие патенты:

Изобретение относится к области радиотехники и предназначено для применения в системах передачи данных, использующих частотно-адаптивный режим работы или режим с псевдослучайной перестройкой рабочей частоты.

Изобретение относится к радиоизмерительной технике и может быть использовано в качестве источника высокостабильных сигналов. Групповой водородный хранитель времени и частоты содержит N групп блоков из последовательно соединенных квантового генератора, подключенного к смесителю частоты, вторым входом соединенный с умножителем частоты, выход смесителя частоты через усилитель промежуточной частоты подключен к входу фазового детектора, второй вход которого соединен с выходом синтезатора частоты, кварцевый генератор, параллельно соединенный с входами умножителей частоты и синтезаторами частоты N групп блоков, а сумматор напряжения включен между выходами фазовых детекторов групп блоков, а выход сумматора соединен с входом кварцевого генератора.

Предлагается устройство (1) для измерения электрической мощности, потребленной рельсовым транспортным средством из высоковольтной линии электропитания. Устройство включает токовый датчик (5-7), соединенный с указанной линией (L) электропитания, резистивный делитель (23) напряжения, подсоединенный между линией (L) электропитания и электрическим выводом (22; 32c) заземления, первые обрабатывающие устройства (9-13), соединенные с токовым датчиком (5-7) и выполненные с возможностью генерирования сигналов или данных, отражающих интенсивность тока, потребленного из линии (L) электропитания, и вторые обрабатывающие устройства (41-45), соединенные с выходом (28) делителя (23) напряжения и выполненные с возможностью генерирования сигналов или данных, отражающих напряжение линии (L) электропитания.

Использование: в области электрической связи для передачи данных повышенной надежности. Технический результат - обеспечение высоконадежного доведения команд управления до абонента.

Группа изобретений относится к кабельной промышленности и может быть использована для определения температурного коэффициента фазы (ТКФ) и температурного коэффициента затухания (ТКЗ) кабельных сборок.

Изобретение относится к системе проводной связи и предназначено для минимизации помех и оптимизации скорости передачи данных в сети Интернет за счет мониторинга и управления скоростью передачи данных в каждом проводе в составе многожильного кабеля в режиме реального времени.

Изобретение относится к технике электросвязи и может быть использовано для контроля качества дискретного канала связи. Технический результат заключается в повышении точности адаптации алгоритма прогнозирования ошибок в канале связи и уменьшении времени прогнозирования.

Изобретение относится к радиотехнике и может быть использовано при оценке систем связи с широкополосными сигналами. Технический результат заключается в повышении точности измерения защищенности сигнала от помех.

Изобретение относится к средствам определения качества сигнала в кабельных сетях. .

Изобретение относится к области электрорадиотехники и может быть использовано в дуплексных и полудуплексных асинхронных системах передачи данных с каналом обратной связи.

Изобретение относится к беспроводной связи. Технический результат заключается в обеспечении возможности пользовательскому оборудованию (UE) выполнить определение качества соты в сети беспроводной связи, используя параметры из соответствующего объекта измерения.
Наверх