Теплоаккумулирующий состав на основе смеси гексагидрата нитрата цинка и его оксида

Изобретение относится к области теплосберегающих и энергосберегающих технологий. Теплоаккумулирующий состав на основе смеси гексагидрата нитрата цинка и его оксида включает гексагидрат нитрата цинка, оксид цинка, активированный уголь и карбоксиметилцеллюлозу. Теплоаккумулирующий состав характеризуется температурой фазового перехода, обеспечивающего работоспособность состава в качестве температуроподдерживающего материала, между 30 и 36°С. Указанный состав приготовлен путем плавления гексагидрата нитрата цинка в смеси с оксидом цинка в течение 30 мин с постоянным перемешиванием, выдерживания в течение 10 мин, последовательного добавления активированного угля и карбоксиметилцеллюлозы и дальнейшего перемешивания в течение 3 ч с контролем температуры 60°С. Изобретение позволяет получить материал для аккумулирования избытка тепловой энергии с целью отопления или кондиционирования помещений, салонов автотранспорта. 4 ил., 1 табл., 1 пр.

 

Изобретение относится к теплоаккумулирующим материалам, которые хранят и отдают тепло за счет процессов фазового перехода и могут применяться для аккумулирования избытка тепловой энергии с целью отопления или кондиционирования помещений, салонов автотранспорта и поддержания температуры. Предлагаемый теплоаккумулирующий материал характеризуется температурой фазового перехода между 30 и 36°С. Материал возможно использовать в каскадной системе отопления в качестве низкотемпературного слоя. Также возможно внедрить данный материал в систему подогрева полов, чтобы обеспечить оптимальные температурные условия на протяжении холодных периодов года.

Для кондиционирования помещения и поддержания температуры в условиях жаркого климата, а также в термостабилизирующих устройствах требуются материалы, эффективно аккумулирующие тепловую энергию при температурах от 30 до 36°С без переохлаждения, с конгруэнтным плавлением, стабильные и нетоксичные. В качестве таких материалов подходят фазопереходные теплоаккумулирующие материалы на основе кристаллогидратов, а именно гексагидрат нитрата цинка, плавящийся конгруэнтно.

В патенте SU943265 А1 (дата приоритета: 20.10.1980) был предложен теплоаккумулирующий состав, в котором предлагается использовать кристаллогидраты нитратов кадмия и цинка в соотношении (35-45):(65-55). Данный состав имеет температуру фазового перехода 27.4°С и теплоту плавления 123-129 Дж/г. Температура фазового перехода не соответствует требуемому диапазону температур. Авторами не показаны уровни переохлаждения данного материала и нет информации о наличии/отсутствии у него фазовой сегрегации, времени аккумуляции и энтальпии кристаллизации.

Состав более сложного строения на основе кристаллогидратов нитратов цинка, никеля, магния и лития предложен в патенте на изобретение RU2567921 С1 «Теплоаккумулирующий материал» (дата приоритета: 29.04.2014). Авторы использовали для приготовления смеси кристаллогидратов нитратов цинка, никеля, магния и лития в соотношениях 4.5-6.5:10.5-14.5:16.5-18.5:68.5-60.5 массовых процентов соответственно. Энтальпия плавления составила 220 Дж/г при температуре плавления 25.5°С. Переохлаждение не превышает 4°С. К недостаткам данного патента можно отнести отсутствие информации о наличии/отсутствии у него фазовой сегрегации, времени аккумуляции и энтальпии кристаллизации, а также то, что в составе смеси присутствуют дорогостоящие материалы, значительно повышающие стоимость изобретения.

В патенте JP-A-53-096979 (дата приоритета: 24.08.1978) предлагается состав с использованием гексагидрата нитрата цинка, который в чистом виде имеется энтальпию плавления 129 Дж/г.Авторы приготавливают состав, добавляя к гексагидрату нитрата цинка безводный гипс, прокаленный гипс и ряд других компонентов. При этом энтальпия теплоаккумулирующего материала после приготовления смеси не указывается. Переохлаждение состава составляет 3°С. Авторами не показаны наличие/отсутствие у него фазовой сегрегации, времени аккумуляции и энтальпии кристаллизации. Поэтому работоспособность этого состава сложно оценить.

В патенте ЕР 3450010 В1 (дата приоритета: 05.08.2020) использовался тетрагидрат нитрата цинка Zn(NO3)2⋅4Н2О, который использовался для получения ионов цинка при перемешивании в этаноле, a ZnO являлся конечным продуктом высокотемпературной обработки состава, основой которого являлся безводный нитрат калия. Данный состав плавится в температурном диапазоне от 300 до 500°С, поэтому он не подходит для рассматриваемого диапазона 30-36°С.

Наиболее близким к предлагаемому изобретению по совокупности существенных признаков является состав, описанный в патенте SU 983134 А1 «Теплоаккумулирующий состав на основе кристаллогидрата нитрата цинка» (дата приоритета: 21.05.1981), включающий 0.5-5% гексагидрата нитрата кобальта и 99.5-95% гексагидрата нитрата цинка. Авторы использовали гексагидрат нитрата кобальта как добавку для снижения переохлаждения, при этом удалось снизить переохлаждение до 5-7°С при температуре плавления 36.4°С. Недостатком предложенного способа является то, что состав не является эвтектическим, т.е. гексагидрат нитрата кобальта не плавится конгруэнтно. Данные по энтальпии плавления отсутствуют, а высокая стоимость нитрата кобальта (в 5-6 раз выше других кристаллогидратов) существенно увеличивает стоимость теплоаккумулирующего материала, из-за чего его эксплуатация потребителем затрудняется. При этом отсутствует информация о наличии/отсутствии у него фазовой сегрегации, времени аккумуляции и энтальпии кристаллизации.

Задачей предлагаемого изобретения является минимизация фазовой сегрегации и переохлаждения, не превышающего 3°С, теплоаккумулирующего материала на основе кристаллогидрата нитрата цинка, а также измерение его энтальпий плавления и кристаллизации, времени аккумуляции, температуры плавления и кристаллизации.

При осуществлении данного изобретения, создается технический результат, который заключается в отсутствии у фазопереходного теплоаккумулирующего материала фазовой сегрегации, повышении термостабильности, при температуре фазового перехода от 30 до 36°С, понижении переохлаждения, достижения энтальпии фазового перехода, достигающей 150 Дж/г, экологической безопасности.

Технический результат достигается за счет того, что теплоаккумулирующий состав на основе гексагидрата нитрата цинка включает дополнительные вещества - оксид цинка и активированный уголь в качестве зародышеобразователей и загуститель. Основным преимуществом гексагидрата нитрата цинка при его использовании в чистом виде, является его конгруэнтное плавление, что встречается редко у кристаллогидратов неорганических солей, при котором кристаллогидрат при контроле температурного режима не отщепляет воду, поэтому его использование сопряжено лишь с переохлаждением. Для снижения данного эффекта предлагается использовать дополнительные вещества, а именно загустители для повышения вязкости для предотвращения фазовой сегрегации и зародышеобразователи. В качестве загустителя предложено использовать карбоксиметилцеллюлозу (КМЦ), которая предотвращает фазовую сегрегацию материалов в процессе медленного плавления. Зародышеобразователи подбираются таким образом, чтобы обеспечить расплав эпицентрами кристаллизации. Для этого обычно подбираются такие вещества, которые имеют схожую кристаллическую решетку и не плавятся в рабочем диапазоне температур теплоаккумулирующего материала. Часто для этих целей применяют оксиды соответствующих металлов и модификации углерода: сажу, активированный уголь и термообработанный графит. Использование всех компонентов в необходимых количественных соотношениях позволяет применять фазопереходные теплоаккумулирующие материалы в циклическом режиме в температурном диапазоне от 30 до 36°С, в зависимости от состава, что соответствует ранее заявленному диапазону для кондиционирования помещений и применения в каскадном тепловом аккумуляторе в качестве низкотемпературного слоя.

В качестве предлагаемого фазопереходного теплоаккумулирующего материала предлагается использовать смесь, состоящую из:

Гексагидрата нитрата цинка Zn(NO3)2⋅6H2O;

Оксида цинка ZnO с масс. долей 1.5% от массы кристаллогидрата;

Активированного угля Сакт с масс. долей 10% от массы кристаллогидрата;

Карбоксиметилцеллюлозы с масс. долей по отношению к эвтектическому составу 1% (1%КМЦ).

Состав смеси:

Zn(NO3)2⋅6H2O+1.5%ZnO+10%Сакт+1%КМЦ

Гексагидрат нитрата цинка и оксид цинка массами 20.1 и 0.3 г соответственно, взвешивали и плавили в течение 30 минут при перемешивании до расплавления, после чего продолжали перемешивание еще в течение 10 минут, а потом последовательно добавляли 10%Сакт и 1%КМЦ по массе, после чего продолжали перемешивание в течение трех часов, контролируя температуру в 60°С. Приготовленная смесь хранилась в эксикаторе для предотвращения поглощения излишек влаги.

Для подтверждения свойств синтезированных материалов методом дифференциальной сканирующей калориметрии (ДСК) исследованы температура и теплота плавления, а также величина температурного гистерезиса. Условия эксперимента методом ДСК:

• Максимальная температура нагрева,°С, 60;

• Минимальная температура охлаждения,°С, 0;

• Скорость нагрева, °С/мин: 10;

• Атмосфера, N2;

• Скорость охлаждения, °С/мин: 2;

• Газ для охлаждения, N2;

• Скорость подачи газа мл/мин, 40.

Исследуемые методом температурной истории навески веществ массой 15-25 грамм более точно показывают температуру кристаллизации и величину переохлаждения материала в условиях практической эксплуатации (Safari A., Saidur R, Sulaiman F.A., Xu Y., Dong J. A review on supercooling of Phase Change Materials in thermal energy storage systems // Renewable & Sustainable Energy Reviews. - 2017. - T. 70. - C. 905-919.

Измерения проводят при естественном охлаждении навески массой 15-25 грамм, для получения практических данных по теплофизическим параметрам: энтальпии кристаллизации, температуре кристаллизации, времени аккумуляции, переохлаждения в комнатных условиях эксплуатации материала с учетом его температуры плавления, гигроскопичности, конгруэнтного типа плавления.

Анализ методом температурной истории проводился в кварцевой пробирке объемом 30 мл, которая была заполнена на 2/3. В качестве стандарта использовалась вода. Нагрев проходил до 96°С. А охлаждение до 20°С. Ориентировочная масса воды mw и исследуемого материала составила 20 г. Площадь пика (энтальпия кристаллизации) оценивалась в каждом исследовании индивидуально в зависимости от температуры максимального нагрева веществ, до температуры фактического начала кристаллизации. Такой подход обусловлен более точными оценками энтальпии кристаллизации.

Изобретение поясняется чертежами, где:

на фиг. 1. представлена кривая ДСК для смеси состава Zn(NO3)2⋅6Н2О+1.5%ZnO+10%Сакт+1%КМЦ;

на фиг. 2 - кривая температурной истории для смеси состава Zn(NO3)2⋅6H2O+1.5%ZnO+10%Сакт+1%КМЦ;

на фиг. 3 - кривая ДСК для Zn(NO3)2⋅6H2O без добавок;

на фиг. 4 - кривая температурной истории для Zn(NO3)2⋅6H2O без добавок.

Физико-химические характеристики предлагаемого теплоаккумулирующего состава в сравнении с характеристиками гексагидрата нитрата цинка без добавок представлены в таблице 1 на основании данных фиг. 1-4.

Как следует из кривой ДСК на фиг. 1, при добавлении загустителя и зародышеобразователей энтальпия плавления чистого гескагидрата нитрата цинка незначительно уменьшилась со 157.2 Дж/г до 153.4 Дж/г, но с учетом снижения переохлаждения с 9.3°С до 2.7°С (по данным измерений методом температурной истории, на фиг. 2) данное снижение оправданно.

Таким образом, свойства теплоаккумулирующего состава исследованы в условиях практической эксплуатации и по сравнению с чистым кристаллогидратом нитрата цинка имеют низкое переохлаждение, составляющее 2.7°С и энтальпию кристаллизации 165.39 Дж/г при температуре кристаллизации 31.82°С, температуре плавления 35.36°С. Отличие изобретения от аналогов на основе нитрата цинка и других материалов состоит в исследовании в практических условиях методом температурной истории, имитирующим естественное охлаждение, что позволило получить практические результаты. Время аккумуляции 15-25 грамм навески материала составило 26.5 мин без теплоизоляции, как показано на фиг. 2.

Теплоаккумулирующий материал предложенного состава может также использоваться в охлаждающих установках для кондиционирования помещений, в каскадной системе нагрева в качестве нижнего низкотемпературного слоя и в системе подогрева полов.

Теплоаккумулирующий состав на основе смеси гексагидрата нитрата цинка и его оксида, включающий гексагидрат нитрата цинка, оксид цинка, активированный уголь и карбоксиметилцеллюлозу, характеризующийся температурой фазового перехода, обеспечивающего работоспособность состава в качестве температуроподдерживающего материала, между 30 и 36°С, приготовленный путем плавления гексагидрата нитрата цинка в смеси с оксидом цинка в течение 30 мин с постоянным перемешиванием, выдерживания в течение 10 мин, последовательного добавления активированного угля и карбоксиметилцеллюлозы и дальнейшего перемешивания в течение трех часов с контролем температуры 60°С.



 

Похожие патенты:

Группа изобретений относится к поддержанию температуры текучих сред в трубах даже при прерывании потока текучих сред. В способе на первом этапе создают накапливающий тепло слой (1), содержащий аккумулирующий скрытое тепло материал (2) и матричный материал (3).

Группа изобретений относится к вариантам выполнения системы для нагревания курительного материала. Система для нагревания курительного материала содержит устройство для нагревания курительного материала с целью испарения по меньшей мере одного компонента этого курительного материала.

Изобретение относится к области химической технологии и может быть использовано в производстве охлаждающих жидкостей, предназначенных для системы охлаждения двигателей внутреннего сгорания автомобилей, сельскохозяйственных машин, специальной техники, в качестве теплоносителя в различных теплообменных аппаратах, эксплуатируемых при низких и крайне низких температурах.

Изобретение относится к антифризам - низкозамерзающим охлаждающим жидкостям и может быть использовано для охлаждения двигателей внутреннего сгорания транспортных средств, специальной техники, а также в качестве теплоносителя в теплообменных аппаратах. Описанная охлаждающая жидкость для автомобильной техники включает мас.%: этиленгликоль или смесь этиленгликоля с ди-, триэтиленгликолем и/или с глицерином 46,608-94,418; антивспениватель (полидиметисилоксан с вязкостью от 50 до 500 мм2/с) 0,002-0,005; индикатор рН из ряда флуороновых красителей 0,0004-0,001; в качестве антикоррозионных присадок: двухосновная органическая кислота из ряда бутандиовая, пентандиовая, гександиовая, гептандиовая, октандиовая, нонандиовая, декандиовая и/или их смесь и/или одноосновная органическая кислота из ряда пентановая, гексановая, гептановая, 2-этилгексановая, октановая и/или бензойная кислота или смесь этих кислот 0,863-2,440; молибденсодержащие соли щелочных металлов из ряда молибдат натрия, молибдат лития, молибдат калия и/или молибдат аммония или их смесь 0,055-0,136; гидроксиды щелочных металлов из ряда гидроксид натрия, гидроксид лития, гидроксид калия или их смесь 0,411-0,839; трилон Б (динатриевая соль этилендиаминтетрауксусной кислоты) 0,0017-0,0034; бензотриазол и/или его производные 0,132-0,292; полициклические амины из ряда уротропина и его производных 0,195-0,406; метасиликаты щелочных металлов, например, из ряда метасиликат натрия пятиводный, метасиликат калия пятиводный 0,03-0,087; нитраты щелочных металлов из ряда нитрат натрия, нитрат калия, нитрат лития 0,101-0,244; бура пятиводная 0,38-0,878; вода 2,5866-52,060.

Настоящее изобретение относится к композиции хладагента, включающей в себя дифторметан (HFC-32), пентафторэтан (HFC-125) и трифториодметан (CF3I), для использования в системе теплообмена, включающей в себя системы кондиционирования воздуха и холодильные установки, и в частности к аспектам использования таких композиций в качестве замены хладагента R-410A в системах нагрева и охлаждения, а также для модернизации систем теплообмена, включая системы, предназначенные для использования с хладагентом R-410A.
Изобретение относится к области теплопроводящих диэлектрических материалов и может найти применение при изготовлении теплоотводящих прокладок, лент, герметиков, заливочных компаундов для электротехнических и электронных устройств, изделий силовой электроники, портативных устройств, блоков электропитания и силовых преобразователей, в которых необходимо обеспечить теплоотвод от теплонагруженных элементов и узлов.

Описан способ сжижения насыщенной углеводородами фракции (А), в котором насыщенную углеводородами фракцию охлаждают с помощью по меньшей мере одного контура смешанного холодильного агента (E1, Е2, Е3). Холодильный агент, циркулирующий в контуре смешанного холодильного агента, сжимают на по меньшей мере двух ступенях (C1, С2).

Изобретение относится к способу непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана, заключающемуся в том, что ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, добавляют катализатор алкилирования, алкилируют смесь, выдерживая смесь под воздействием ультразвукового поля, и путем дистилляции выделяют из смеси теплоноситель, отличающемуся тем, что нагрев смеси производят до температуры 150-180°С, частоту ультразвукового поля выбирают в диапазоне 21.3-25.7 кГц, а объемную скорость подачи нагретой смеси в системе, протекающей через реактор алкилирования, выбирают согласно формуле в пределах V/70 < v < V/50, где v - объемная скорость подачи смеси (м3/мин), а V - объем реактора (м3).

Изобретение относится к области криогенной техники, в частности холодильной техники, и может быть использовано для получения низкотемпературных теплоносителей на основе фенилалкана. Способ непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана, в котором ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, добавляют катализатор алкилирования, алкилируют смесь и выделяют фенилалкан путем дистилляции, смесь ациклического парафина и фенильного соединения перед операцией нагрева подвергают ультразвуковому кавитационному эмульгированию на частоте ультразвукового поля в пределах 315-325 кГц, при этом в дальнейшем смесь нагревают до температуры 130-170°С, а объемную скорость подачи смеси в системе для непрерывности процесса приготовления теплоносителя выбирают исходя из того, чтобы суммарное время нагрева частиц алкилируемой смеси составляло не менее 60-90 минут.

Изобретение может быть использовано в теплоэнергетике. Теплоаккумулирующий состав содержит, мас.%: LiF - 29,0÷29,8; NaF - 11,4÷12,0; KF - 58,8÷59,1.

Группа изобретений относится к поддержанию температуры текучих сред в трубах даже при прерывании потока текучих сред. В способе на первом этапе создают накапливающий тепло слой (1), содержащий аккумулирующий скрытое тепло материал (2) и матричный материал (3).
Наверх