Электролит для электролитно-плазменного полирования деталей из жаропрочных сплавов

Изобретение относится к области электролитического полирования деталей из жаропрочных литейных сплавов вакуумной выплавки, таких как ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ, и может быть использовано в турбомашиностроении при финишной обработке лопаток турбин. Предложено применение водного раствора, содержащего сульфат аммония 30-50 г/л и фторид натрия 5-10 г/л, в качестве электролита для электролитно-плазменного полирования деталей из жаропрочных сплавов. Технический результат заключается в расширении технологических возможностей электролита за счет обеспечения полирования деталей из жаропрочных литейных сплавов. 2 табл.

 

Предлагаемое изобретение относится к области машиностроения, а именно к электролитно-плазменному полированию деталей из жаропрочных литейных сплавов вакуумной выплавки, преимущественно ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ, и может быть использовано в турбомашиностроении при финишной обработке лопаток турбин ГТД.

Известен электролит для электролитно-плазменного полирования деталей из титановых сплавов марок ВТ1, ВТ3-1 и ВТ6, содержащий водный раствор смеси NH4F от 5 до 15 г/л и фторида калия KF от 30 до 50 г/л. (описание изобретения к патенту РФ №2373306, C25F 3/16, опубл. 20.11.2009, Бюл. №32).

Однако использование указанного электролита в процессе полирования деталей является многостадийным, что приводит с одной стороны к возрастанию сложности процесса обработки деталей, снижению качества и надежности процесса обработки из-за необходимости обеспечения большого количества параметров процесса и их соотношений, а также к повышению его трудоемкости. Кроме того, указанный электролит не предназначен для электролитно-плазменного полирования жаропрочных сплавов, таких как ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ.

Известен электролит для электролитно-плазменного полирования деталей из титановых сплавов марок ВТ6, ВТ6с, ВТ6ч, ВТ8, ВТ8М, ВТ1-0ВТ16, ВТ22, ВТ23, ВТ3, ВТ18У, ВТ14, ВТ9, а также жаропрочных сплавов, преимущественно из сплава ЭП741НП, содержащий водный раствор гидроксиламина солянокислого от 4 до 6 вес.% и фторида натрия NaF или фторида калия KF от 0,7 до 0,8 вес.% (описание изобретения к патенту РФ №2552203, C25F 3/16, опубл. 10.06.2015, Бюл. №16).

Обрабатываемые детали погружали в ванну с водным раствором электролита и прикладывали к детали положительное, а к электролиту - отрицательное напряжение.

Однако известный электролит не обеспечивает при электролитно-плазменном полировании качественную обработку поверхности деталей из жаропрочных сплавов ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ. При обработке в данном электролите остаются неполированные зоны.

Известен электролит для электролитно-плазменного полирования деталей из тугоплавких сплавов, содержащий водный раствор смеси гидроксиламина солянокислого NH2OH×HCl от 24 до 40 г/л и фторида натрия NaF от 9 до 22 г/л. (описание изобретения к патенту РФ №2664994, МПК C25F 3/26, опубл. 24.08.2018, Бюл. №24).

Обрабатываемую деталь из тугоплавкого сплава погружают в ванну с водным раствором электролита, прикладывают к изделию положительный электрический потенциал, а к электролиту - отрицательный, в результате чего достигают возникновения разряда между обрабатываемым изделием и электролитом. Процесс электролитно-плазменного полирования осуществляют при электрическом потенциале от 290 до 330 В. При обработке производят циркуляционное охлаждение электролита (поддерживалась средняя температура процесса в интервале от 80 до 85°С).

Однако электролитно-плазменное полирование в этом растворе деталей из жаропрочных сплавов ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ недостаточно эффективно. При обработке в данном электролите остаются неполированные зоны.

Наиболее близким к предлагаемому является электролит для электролитно-плазменного полирования деталей из титановых и железохромоникелевых сплавов, содержащий водный раствор фторида натрия (описание изобретения к патенту РФ №2706263, МПК C25F3/16, опубл. 15.11.2019, Бюл. №32).

Обработка лопаток компрессора ГТД из титановых сплавов марок ВТ6, ВТ8 на данном электролите возможна только с добавкой к фториду натрия гидроксиламина сернокислого в качестве регулятора кислотности.

В патенте представлена обработка лопаток компрессора ГТД из железохромоникелевых сплавов марки ЭП718-ИД, ВЖ105-ИД, ЭП718-ПД, ВЖ105-ПД. Данный электролит, содержащий водный раствор фторида натрия, непригоден для качественной электролитно-плазменной полировки лопаток из жаропрочных литейных сплавов. При обработке жаропрочных литейных сплавов вакуумной выплавки, таких как ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ, качество поверхности лопаток после полировки низкое, что требует корректировки электролита, жесткое поддержание концентрации электролита и режимов обработки.

Технической задачей изобретения является создание раствора для электролитно-плазменного полирования деталей из жаропрочных литейных сплавов, преимущественно ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ, без ухудшения класса чистоты поверхности.

Технический результат заключается в расширении технологических возможностей электролита путем обеспечения электролитно-плазменного полирования деталей из жаропрочных литейных сплавов, преимущественно ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ, за счет введения в состав дополнительной добавки - сульфата аммония.

Технический результат достигается тем, что электролит для электролитно-плазменного полирования деталей из жаропрочных литейных сплавов, содержащий водный раствор фторида натрия, в отличие от известного, дополнительно содержит сульфат аммония, при следующем соотношении компонентов, г/л:

сульфат аммония 30-50
фторид натрия 5-10
вода остальное.

Введение сульфата аммония в состав электролита вызывает стабилизацию вокруг детали парогазовой оболочки, что способствует более качественному электролитно-плазменному полированию.

При более низком процентном содержании компонентов в электролите на деталях возникает оксидная пленка, поверхность темная неравномерная, при повышении концентрации компонентов сверх указанной сильно проявляется макроструктура материала, неравномерно обрабатываются закрытые зоны.

Предложенный состав электролита позволяет проводить электролитно-плазменное полирование деталей из жаропрочных литейных сплавов ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ, при этом чистота поверхности повышается на 2-3 класса по сравнению с исходной, шероховатость до обработки Ra 1,0…1,25 после электролитно-плазменной полировки шероховатость Ra 0,05…0,07.

Изобретение может быть проиллюстрировано на примере электролитно-плазменного полирования лопаток ГТД из материала ВЖЛ12У-ВИ на установке ЭИП-1.

Процесс электролитно-плазменного полирования включает погружение обрабатываемой детали из жаропрочного сплава в ванну с водным раствором электролита, прикладывают к детали положительный электрический потенциал, а к электролиту - отрицательный, в результате чего достигают возникновения разряда между обрабатываемым изделием и электролитом, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки. Процесс электролитно-плазменного полирования осуществляют электрическом потенциале, выбранном в диапазоне от 250 В до 320 В, при температуре 75-90°С. При обработке производят циркуляционное охлаждение электролита (поддерживалась средняя температура процесса в интервале от 85 до 87°С).

При отработке процесса электролитно-плазменной полировки рабочих лопаток из материалов ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ были проработаны разные составы электролитов. Результаты представлены в табл.1.

В качестве электролита выбран водный раствор смеси сульфата аммония (NH4)2SO4 - от 30 до 50 г/л и фторида натрия NaF - от 5 до 10 г/л.

Процесс электролитно-плазменного полирования происходил при следующих режимах обработки:

Upaб. 250 В
Температура электролита 85-87°С
Время обработки от 1 до 10 мин.

Снимаемый припуск материала на лопатках от 0,01 до 0,06 мм.

Экспериментальные данные, полученные при использовании предлагаемого электролита (изменение шероховатости поверхности образцов из материала ВЖЛ12У-ВИ на установке ЭИП-1), приведены в табл. 2.

Использование предложенного электролита дает возможность качественно проводить электролитно-плазменное полирование деталей из жаропрочных литейных сплавов, таких как ВЖЛ12У-ВИ, ЖС6У-ВИ, ЖС32-ВИ. При обработке в данном электролите не остаются неполированные зоны.

Применение водного раствора, содержащего сульфат аммония 30-50 г/л и фторид натрия 5-10 г/л, в качестве электролита для электролитно-плазменного полирования деталей из жаропрочных сплавов.



 

Похожие патенты:

Изобретение относится к обработке каналов сложной формы в детали и может быть использовано при полировании каналов переменного сечения с изменяющимся направлением и профилем, а также каналов малого сечения. Способ включает анодно-абразивную обработку канала в проточном электролите с магнитоабразивными заряженными частицами, выполненными на основе композиционных материалов, включающих ферромагнитные или магнитные материалы, модифицированные высокотокопроводящими наночастицами графена и/или графеновых нанотрубок, на которые воздействуют внешним магнитным полем с обеспечением возникновения вибрационных колебаний магнитоабразивных электрически поляризованных заряженных частиц или обрабатываемой детали.

Изобретение относится к области плазменной техники для электролитно-плазменной обработки изделий сложной формы, содержащих удлиненные и искривленные полости малого диаметра, в том числе изготовленных с применением аддитивных технологий. Способ включает погружение обрабатываемого изделия - анода, закрепленного на токопроводящей проволоке, в емкость с электролитом, являющимся одновременно катодом, подачу напряжения на электроды, зажигание разряда между ними, при этом напряжение разряда устанавливают U≥100 В, ток разряда – в диапазоне 0,015≤I≤250 А, а время обработки изделия – не менее 15 с, при этом в качестве электролита используют смесь негорючего газа в виде диоксида углерода и органической токопроводящей добавки в виде уксусной кислоты в количестве 0,5-50,0 % от массы газа, а зажигание разряда проводят при температуре (1,01-3,0)Ткр и давлении (1,01-6,0)Ркр, где Ткр и Ркр – это температура и давление образования сверхкритической фазы исходной смеси.

Изобретение относится к устройствам для электрополирования поверхности металлических деталей. Устройство содержит камеру, внутри которой расположено по крайней мере одно устройство для полирования, содержащее держатель обрабатываемой лопатки с прижимным устройством, вибратором и внешним охватывающим электродом, эквидистантным по форме охватываемому перу лопатки, выполненным с возможностью размещения в его полости пера лопатки с образованием между поверхностью пера и охватывающим электродом зазора, предотвращающего контакт между лопаткой и электродом и достаточного для продевания и перемещения ленты из ионитов с одновременным обеспечением контакта с поверхностью обрабатываемого пера лопатки и охватывающим электродом, ленты, снабженной по боковым краям гибкими направляющими полосами, продетыми в направляющие полости электрода, обеспечивающими натяжение упомянутой ленты в направлении продольной оси лопатки, ее плавный отвод от верхнего торца лопатки и области перехода от пера к основанию лопатки.

Изобретение относится к технологии электрополирования поверхности лопаток турбомашин. Способ включает установку обрабатываемого пера лопатки в электрод, охватывающий перо с зазором, в котором расположена лента из ионитов, обеспечение контакта ленты со всей обрабатываемой поверхностью пера и с охватывающим электродом, перемещение ленты в зазоре, подачу противоположного по знаку электрического потенциала на лопатку и охватывающий электрод.
Изобретение относится к области гальванотехники и может быть использовано в различных отраслях промышленности, в частности в ювелирном деле. Применение раствора H2SO4 в качестве электролита в процессах сглаживания и полирования металлов путем переноса ионов с помощью свободных полимерных твердых тел, являющихся электропроводными в газовой среде и состоящими из сферических частиц с пористостью и способностью удержания электролита с обеспечением электропроводности частиц, при этом применяют раствор H2SO4 с концентрацией, зависящей от типа полируемого металла или сплава.
Изобретение относится к электролитно-плазменной обработке металлических деталей и может быть использовано для полирования лопаток турбомашин из никелевых и титановых сплавов. Способ включает погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала и образования в парогазовой оболочке плазмы.

Изобретение относится к технологии электрополирования поверхностей деталей из металлов и сплавов, и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик. Способ включает осуществление контакта обрабатываемой поверхности детали с электропроводящей средой и электропроводящей среды с электродом, подачу противоположного по знаку электрического потенциала на деталь и электрод.

Изобретение относится к технологии электрополирования внутренних поверхностей деталей из металлов и сплавов и может быть использовано для обработки полых лопаток турбомашин. Способ включает размещение электрода и электропроводящей среды во внутренней полости детали, обеспечение контакта электропроводящей среды с электродом и поверхностью детали, подачу противоположного по знаку электрического потенциала на деталь и проводящую среду через электрод.

Изобретение относится к области гальванотехники и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик. Способ включает погружение детали в проводящую среду и подачу противоположного по знаку электрического потенциала на деталь и проводящую среду через введенный в упомянутую среду электрод, при этом электрополирование проводят в среде гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул, при этом используют электрод, охватывающий с зазором обрабатываемую поверхность детали, перемещая через упомянутый зазор упомянутые гранулы с обеспечением контакта всей полируемой поверхности детали с упомянутыми гранулами и гранул между собой, причем соотношение размера гранул a и величины зазора b между электродом и поверхностью детали выбирают не менее b = 10 a, и подают на деталь и гранулы электрический потенциал, обеспечивающий полирование обрабатываемой детали в среде упомянутых гранул до получения заданной шероховатости поверхности.

Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин. Способ включает погружение металлической детали в электропроводящую среду и подачу противоположного по знаку электрического потенциала на деталь и электропроводящую среду.

Изобретение относится к технологии электрополирования поверхности лопаток турбомашин. Способ включает установку обрабатываемого пера лопатки в электрод, охватывающий перо лопатки с зазором, заполненным гранулами из анионитов, содержащих электролит, обеспечение контакта гранул со всей обрабатываемой поверхностью пера и с охватывающим электродом, перемещение гранул в зазоре относительно поверхности пера, подачу противоположного по знаку электрического потенциала на лопатку и охватывающий электрод, обеспечивающего ионный унос металла с поверхности пера лопатки. При этом используют составной охватывающий электрод, состоящий из электрода, эквидистантного форме спинки пера лопатки, располагая его со стороны спинки, и из электрода, эквидистантного форме корыта пера лопатки, располагая его со стороны корыта. Технический результат - повышение качества и надежности обработки поверхности пера лопатки за счет повышения однородности обработки ее поверхности и обеспечения заданной геометрии пера лопатки. 8 з.п. ф-лы, 4 ил.
Наверх