Способ термообработки изделий из жаропрочного никелевого сплава эп741нп

Изобретение относится к области металлургии, в частности к термообработке жаропрочных никелевых сплавов, и может быть использовано в производстве изделий из сплава марки ЭП741НП, предназначенных для тяжелонагруженных деталей, работающих при повышенных температурах в газотурбинных двигателях. Способ термообработки деталей из жаропрочного никелевого сплава ЭП741НП, включающий нагрев до температуры однофазной области, выдержку при этой температуре, охлаждение и старение. Нагрев осуществляют до температуры не более чем на 40°С выше температуры полного растворения γ'-фазы, выдерживают при этой температуре в течение от более 4 до 10 часов и охлаждают со скоростью не ниже 10°С/мин, далее проводят три ступени старения на воздухе, при этом на первой ступени старение проводят при температуре 890-920°С с выдержкой в течение 2-5 часов, на второй ступени – при температуре 740-770°С с выдержкой в течение 7-10 часов, а на третьей ступени – при температуре 690-710°С с выдержкой в течение 16-19 часов. Обеспечивается получение высоких характеристик прочности и жаропрочности при рабочих температурах, а также увеличение ресурса и надежности деталей, работающих в условиях жесткого нагружения. 3 табл.

 

Изобретение относится к области металлургии, в частности к термообработке жаропрочных никелевых сплавов, и может быть использовано в производстве изделий из сплава марки ЭП741НП предназначенных для тяжелонагруженных деталей, работающих при повышенных температурах в газотурбинных двигателях. Способ термообработки изделий из жаропрочного никелевого сплава ЭП741НП, включает нагрев до температуры не более 40°С выше температуры полного растворения γ'-фазы, с выдержкой в течение 4-10 часов, скорость охлаждения при закалке поддерживают не ниже 10°С/мин и старение проводят в три стадии при температурах 890-920°С, 740-770°С и 690-710°С. Технический результат заключается в получение высоких характеристик прочности и жаропрочности при рабочих температурах, а также увеличение ресурса и надежности деталей, работающих в условиях жесткого нагружения.

Изобретение относится к области металлургии, в частности к термообработке жаропрочных никелевых сплавов, и может быть использовано в производстве изделий из сплава марки ЭП741НП предназначенных для тяжелонагруженных деталей, работающих при повышенных температурах в газотурбинных двигателях.

Известен «Способ получения изделий из сложнолегированных жаропрочных никелевых сплавов» (Патент RU 2457924 (B22F 3/15, C22F 1/10, 2011). Способ включает горячее изостатическое прессование и термическую обработку путем закалки и последующего старения. Горячее изостатическое прессование (ГИП) и закалку проводят в течение 2-8 часов при температуре на 2-20°С выше температуры сольвуса, скорость охлаждения при закалке поддерживают выше 20°С/мин и старение проводят в две стадии при температурах 850-890°С и 740-780°С. Недостатком известного способа является то, что проведение ГИП и закалки в однофазной области на 2-20°С выше температуры сольвуса сплава не обеспечивает в полной мере высокий уровень механических свойств, особенно длительной прочности (жаропрочности).

Известен «Способ получения изделия из сплава типа ВВ751П с высокой прочностью и жаропрочностью» (Патент RU №2 453 398 (B22F 3/15, C22F 1/10), 2011), включающий горячее изостатическое прессование и термическую обработку с закалкой и старением. Горячее изостатическое прессование и закалку проводят в течение 2-6 часов при температуре на 5-20°С выше температуры сольвуса. Скорость охлаждения при закалке поддерживают выше 25 град/мин и старение проводят в две стадии при температурах 780-800°С и 700-720°С. Недостатком известного способа является то, что применение ГИП и закалки в однофазной области на 5-20°С выше температуры сольвуса сплава и старения в две стадии не позволяет реализовать возможности сплавов по получению высокого уровня прочности и жаропрочности.

Известен также, принятый заявителем за наиболее близкий аналог, «Способ термообработки деталей из жаропрочных никелевых сплавов для повышения сопротивления малоцикловой усталости» (Патент RU №2455383 (C22F 1/10), 2007), включающий нагрев при температуре на 5-25°С выше температуры сольвуса с выдержкой в течение 3-4 часов, охлаждение после нагрева со скоростью выше 20°С/мин и последующее старение в три ступени: 1 ступень - 910°С, выдержка 3 часа; 2 ступень - 750°С, выдержка 8 часов, и 3 ступень - 700°С, выдержка 17 часов. Недостатком способа-прототипа является низкий уровень характеристик прочности и жаропрочности.

С целью устранения перечисленных недостатков предлагается способ термообработки изделий из жаропрочного никелевого сплава ЭП741НП, включающий нагрев до температуры не более 40°С выше температуры полного растворения γ'-фазы, с выдержкой в течение 4-10 часов, скоростью охлаждения при закалке не ниже 10°С/мин и трех старений при температурах 890-920°С, 740-770°С и 690-710°С.

Предлагаемый способ отличается от известного тем, что нагрев осуществляют до температуры не более 40°С выше температуры полного растворения γ'-фазы, выдерживают при этой температуре 4-10 часов и охлаждают со скоростью не ниже 10°С/мин, далее проводят первое старение при температуре 890÷920°С с выдержкой 2-5 часов, воздух; второе старение - 740÷770°С с выдержкой 7-10 часов, воздух, и третье старение - 690÷710°С с выдержкой 16-19 часов, воздух.

Технический результат - более высокие характеристики прочности и жаропрочности при рабочих температурах, и как следствие, увеличение ресурса и надежности деталей, работающих в условиях жесткого нагружения.

Это достигается тем, что закалка в однофазной области при температуре не более 40°С выше температуры полного растворения γ'-фазы, в течение 4-10 часов и охлаждение со скоростью не ниже 10°С/мин, способствует формированию мелкого однородного рекристаллизованного зерна размером до 0,2 мкм. А последующие три ступени старения при понижающихся температурах формируют на основе выделившихся частиц равномерно распределенные частицы оптимального для жаропрочности размера 0,20-0,4 мкм и вторичные карбидные выделения по границам зерен.

Предлагаемым способом, а также по способу-прототипу, были термообработаны аналогичные заготовки изделия, изготовленные из жаропрочного никелевого сплава ЭП741НП.

Результаты испытаний механических свойств, длительной прочности и малоцикловой усталости заготовок, термообработанных предлагаемым способом и способом-прототипом, при температуре 20°С и рабочей температуре 650°С, проведенных по стандартным методикам испытания, представлены в таблицах 1-3.

Таким образом, предлагаемый способ обеспечивает повышение предела прочности на 3-5%, предела текучести 7-10% и жаропрочности почти в три раза при сохранении высокого уровня пластичности.

Как следствие, применения предлагаемого способа, увеличивается ресурс и надежность изделий из жаропрочного никелевого сплава ЭП741НП, работающих в условиях жесткого нагружения.

Способ термообработки деталей из жаропрочного никелевого сплава ЭП741НП, включающий нагрев до температуры однофазной области, выдержку при этой температуре, охлаждение и старение, отличающийся тем, что нагрев осуществляют до температуры не более чем на 40°С выше температуры полного растворения γ'-фазы, выдерживают при этой температуре в течение от более 4 до 10 часов и охлаждают со скоростью не ниже 10°С/мин, далее проводят три ступени старения на воздухе, при этом на первой ступени старение проводят при температуре 890-920°С с выдержкой в течение 2-5 часов, на второй ступени – при температуре 740-770°С с выдержкой в течение 7-10 часов, а на третьей ступени – при температуре 690-710°С с выдержкой в течение 16-19 часов.



 

Похожие патенты:

Изобретение относится к способу химико-термической обработки литой монокристаллической лопатки из никелевого сплава для газовых турбин. Способ включает термическую обработку и диффузионное алитирование, при этом в качестве термической обработки проводят гомогенизацию и закалку лопатки, после чего лопатку помещают в контейнер, засыпают ее шихтовой смесью, содержащей алюминий и никель, а последующее диффузионное алитирование лопатки проводят при температуре алитирования, соответствующей температуре старения сплава, под воздействием деформации сжатия вдоль оси лопатки со сжимающим напряжением σ=(0,3-0,7)⋅σT, где σ - сжимающее напряжение, МПа, σT - предел текучести, МПа, и со скоростью нагружения менее 10-3 %/с-1.

Изобретение относится к металлургии, а именно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана легированных гафнием, и может быть использовано для изготовления специальных изделий с повышенной температурой эксплуатации для различных отраслей промышленности, медицины и техники.

Изобретение относится к области металлургии и может быть использовано при получении изделий из жаропрочных высоколегированных никелевых сплавов, содержащих более 30% упрочняющей γ'-фазы, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных нагрузок при рабочих температурах выше 600°C.

Изобретение относится к металлургии и может быть использовано при получении сложнопрофильных изделий из высоколегированных жаропрочных никелевых сплавов, содержащих более 30% упрочняющей γ'-фазы, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных нагрузок при рабочих температурах выше 600°С.

Изобретение относится к обработке металлов давлением и может быть использовано при горячем прессовании прутков из жаропрочного сплава на никелевой основе ВЖ175-ВИ, содержащего 50-60% упрочняющей γ'-фазы, используемых для дальнейшего передела. Способ производства прутков диаметром менее 60 мм из жаропрочного сплава на никелевой основе ВЖ175-ВИ методом горячей экструзии включает размещение заготовки из сплава ВЖ175-ВИ в оболочку и ее прессование в матрице.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении крупногабаритных сложноконтурных кольцевых изделий из жаропрочных сплавов на никелевой основе, в частности корпуса турбины. Получают кольцевую заготовку путем осадки и последующей прошивки слитка вакуумного дугового переплава диаметром 500 мм.

Группа изобретений может быть использована для конструктивного ремонта пайкой компонентов (1) газовой турбины на основе никеля с высоким содержанием гамма–штрих фазы. Поврежденный компонент размещают в печи и нагревают до первой температуры, которую поддерживают в течение установленного периода времени до охлаждения до около комнатной температуры.

Изобретение относится к области металлургии, а именно к производству труб, изготовленных из сплава на основе никеля, в частности из сплава 625, которые могут быть использованы для эксплуатации в средах с высокой температурой и высоким давлением. Способ изготовления трубы из сплава на основе никеля включает стадии, на которых проводят: a) горячую обработку отливки из сплава на основе никеля с получением заготовки предварительно трубчатой формы или цилиндрической болванки, б) трепанирование цилиндрической болванки или механическую обработку внутреннего диаметра заготовки предварительно трубчатой формы с получением трубчатой заготовки и в) холодную обработку трубчатой заготовки, при этом холодную обработку проводят в один пропуск.

Изобретение относится к области металлургии, а именно способу получения сплава, который может быть использован при изготовлении компонентов турбины, используемых в области добычи и переработки нефти и газа. Способ получения сплава для изготовления компонента турбомашины включает следующие стадии: а) плавление посредством вакуумной индукционной плавки (ВИП) или в электродуговой печи, сплава с химическим составом, состоящим из, мас.%: C 0,005-0,03, Si 0,05-0,5, Mn 0,1-1,0, Cr 19,5-22,5, Ni 34,0-38,0, Mo 3,0-5,0, Cu 1,0-2,0, Co 0,0-1,0, Al 0,01-0,5, Ti 1,8-2,5, Nb 0,2-1,0, W 0,0-1,0, остальное составляет Fe и примеси, причем указанные примеси включают 0,0-0,01 мас.% S и 0,0-0,025 мас.% P; b) рафинирование посредством аргонокислородного обезуглероживания (АКО), вакуумной-индукционной дегазации и разливки (ВИДЗ) или вакуумно-кислородного обезуглероживания (ВКО); с) переплавка посредством электрошлакового переплава (ЭШП) или вакуумно-дугового переплава (ВДП); d) термообработка сплава, полученного на стадии (с), чтобы вызвать солюбилизацию по меньшей мере через один тепловой цикл при температуре 1020-1150ºC, и последующее быстрое охлаждение в жидкой или газовой среде, и e) старение при нагреве до температуры 600-770ºC в течение 2-20 ч и охлаждении при комнатной температуре.

Изобретение относится к области металлургии. Для регулирования температуры в зонах детали и уменьшения напряжений устройство (1) для создания микроструктуры с градиентом структуры в осесимметричной механической детали (P), имеющей полый центр и первоначально обладающей однородной структурой с мелкими зернами, содержит первое нагревательное средство (2), образующее первую оболочку на периферийной поверхности детали (P) для нагрева внешней периферии (E) механической детали (P) до температуры (T1), более высокой, чем температура сольвуса, второе нагревательное средство (3), образующее вторую оболочку, расположенную внутри первой оболочки, для нагрева внутренней периферии (I) механической детали (P) до второй температуры (T2), более низкой, чем температура сольвуса, причем пространство между первой оболочкой и второй оболочкой определяет корпус (L), подходящий для приема осесимметричной механической детали (P), имеющей полый центр.

Настоящее изобретение относится к упрочненному гамма-штрих фазой суперсплаву на основе никеля и его применению для производства и ремонта компонентов турбинного двигателя. Упомянутый суперсплав содержит, мас.%: 9,0-10,5 Сr, 20-22 Со, 1,0-1,4 Мо, 5,0-5,8 W, 2,0-6,0 Та, 3,0-6,5 Аl, 0,2-1,5 Hf, 0,01-0,16 С, 1,5-3,5 Re, 0-1,0 Ge, 0-0,2 Y, 0-1 Si, 0-0,015 В и никель с примесями - остальное. Упрочненный гамма-штрих фазой суперсплав может быть использован в качестве материала для сварочной проволоки или сварочного порошка при изготовлении компонента турбинного двигателя сваркой. Упомянутый компонент может быть получен также с использованием данного суперсплава путем послойного наращивания, или отливки, или горячего формования. Приведенный упрочненный гамма-штрих фазой суперсплав на основе никеля обладает высокой стойкостью к окислению, высокой прочностью и пластичностью, а сварочный материал из суперсплава обеспечивает получение сварных швов без трещин на монокристаллических материалах при температуре окружающей среды. 6 н. и 8 з.п. ф-лы, 10 ил., 7 табл., 5 пр.
Наверх