Способ переработки подстилочного помёта цыплят-бройлеров

Изобретение относится к сельскому хозяйству. Способ переработки подстилочного помета цыплят-бройлеров включает внесение микробных культур рода Pseudomonas и Azotobacter, предварительно каждая разбавленная с водой в соотношении 1:2 и выдержанная в помете в течение 15 дней, причем в качестве микробных культур используют Pseudomonas putida 90 биовар А (171), депонированная в ВКПМ под № В-4492, и Azotobacter chroococcum 31/8 R, депонированная в ВКПМ под № В-4148 с начальным титром не менее 1,0×109 КОЕ/мл, и взятые в объемном соотношении 1:1 из расчета не менее 4,0% каждой культуры на массу подстилочного помета цыплят-бройлеров, и смешивают их с пометом, а затем формируют в бурты. Изобретение позволяет получить высокоэффективное органическое удобрение, обеспечить экологическую безопасность окружающей среды за счет применения более активных микробных культур рода Azotobacter и Pseudomonas, а также упростить процесс переработки помета. 9 табл., 2 пр.

 

Изобретение относится к сельскому хозяйству и может быть использовано при переработке побочных отходов птицеводческих хозяйств для получения органического удобрения.

Птицефабрики являются значительным источником загрязнений окружающей среды, мухи и неприятные запахи, распространяющиеся на большие расстояния от пометохранилища, ухудшают социально-экологические условия жизни и труда сотрудников птицефабрик, а также здоровья животных, вынужденных дышать парами аммиака и другими вредными испарениями из отстойников и сборных ям. Птицефабрики вынуждены платить большие штрафы за нарушение экологии. Проблема утилизации отходов птицефабрик актуальна и потому, что для хранения их занято большое количество пахотных земель.

Известен способ микробной переработки птичьего помета (патент РФ №2055823, МПК(6) C05F 11/08, С12Р 39/00, 1993 г), включающий внесение в птичий помет влажностью 80-90% консорциума бактерий Streptococcus thermophilus, Streptococcus bovis, Lactobacillus salivarius var salicinicus, Lactobacillus salivarius var. salivarius, Lactobacillus acidophilus, депонированный в ВКПМ под N В-5972, в количестве 0,01-4,0%. Смесь ферментируют при естественных условиях, затем в ферментируемую смесь вносят влагопоглощающий материал, в качестве которого может быть использован торф или твердофазный помет. Затем смесь ферментируют при 60-80°C, при аэрации и перемешивании в присутствии личинок синантропных мух до естественного снижения температуры до 25-30°C, потом дополнительно вносят вышеуказанный консорциум в количестве 0,01-8,0% и вновь ферментируют при температуре окружающей среды. В результате получают продукт, который может быть использован как в качестве удобрения, так и в качестве кормовой добавки.

Также известен способ биологической переработки птичьего помета, предусматривающий смешение птичьего помета с влагопоглощающим материалом с последующей аэробной ферментацией смеси в присутствии микроорганизмов при перемешивании до естественного снижения температуры ферментационной смеси до 25-30°C. Причем в качестве микроорганизмов используют консорциум штаммов Bacillus subtilis В-168, Bacillus mycoides В-691, Bacillus mycoides B-46, Streptococcus thermophilus B-907, Candida tropicalis Y-1520, Candida utilis Y-2441 (патент РФ №2322427, МПК (2006.01) C05F11/08, (2006.01) C12N1/20, 2006 г). Преимущественное выполнение способа биологической переработки птичьего помета, когда в качестве консорциума микроорганизмов используют консорциум штаммов Bacillus subtilis В-168, Bacillus mycoides В-691, Bacillus mycoides B-46, Streptococcus thermophilus B-907, Candida tropicalis Y-1520, Candida utilis Y-2441 в равных соотношениях и в количестве 1×108 - 1×109 клеток в 1 мл на 1 т птичьего помета.

Из уровня техники также известен способ получения биоудобрения (патент РФ №2542115, МПК C05F3/00, 2015 г), включающий получение биосмеси путем внесения микробных культур Pseudomonas sp. 114, депонированной в ВКПМ под № В-5060, и Azotobacter chroococcum В 35, депонированной в ВКПМ под № В-6010, с титром 10 кл./мл в соотношении 2:1 на сухой комбинированный носитель из расчета 60 мл на 1 кг и перемешивание, отличающийся тем, что в качестве носителя используют целлюлозосодержащее вещество, например лузгу подсолнечника или риса, и минеральносодержащий компонент, например перлит, взятые в соотношении 1:3 по массе, далее биосмесь наносят на пол птицеводческих помещений в дозе 30-70 г на 1 м2 при влажности носителя 15-20%, затем биосмесь с отходами птицеводческих помещений по мере накопления собирают и складируют в бурты.

Недостатком всех вышеперечисленных способов является многокомпонентность и сложность технологического процесса переработки птичьего помета.

Наиболее близким прототипом к заявляемому техническому решению является способ микробиологической переработки птичьего помета (патент РФ №2437864, МПК (2009.01) C05F 3/00, (2006.01) C05F 11/08, 2011 г), заключающийся во внесении микробной культуры Pseudomonas sp. 114, депонированной в ВКПМ под № В-5060, в птичий помет с последующим перемешиванием, а затем через 5 суток вносят микробную культуру Azotobacter chroococcum В 35, депонированную в ВКПМ под № В-6010, и вновь перемешивают. Титр вносимых микробных культур составлял для Pseudomonas sp. 114 - 108 кл./мл и для Azotobacter chroococcum В 35 - 108 кл./мл. Объемное соотношение вносимых культур 2:1 соответственно из расчета 45 мл на 1 кг птичьего помета при бесподстилочном содержании птицы. При подстилочном содержании птицы Pseudomonas sp. 114 и Azotobacter chroococcum В 35, взятые в отношении 2:1, вносят в количестве 15 мл на 1 кг помета. Перед внесением микробных культур каждую из них разбавляют водой в соотношении 1:2 соответственно и выдерживают в течении 15 дней.

К недостаткам прототипа относится поэтапное внесение культур микроорганизмов и перемешивание бурта с птичьим пометом, и, как следствие, большая трудоемкость и материалоемкость данного способа микробиологической переработки птичьего помета, а также более низкая работоспособность и активность культур, что влияет на экологическую безопасность окружающей среды и на качество получаемого удобрения.

Техническим результатом является получение высокоэффективного органического удобрения, обеспечение экологической безопасности окружающей среды за счет применения более активных микробных культур рода Azotobacter и Pseudomonas, а также упрощение процесса переработки помета.

Технический результат достигается тем, что в способе переработки подстилочного помета цыплят-бройлеров, включающий внесение микробных культур рода Pseudomonas и Azotobacter предварительно каждая разбавленная с водой в соотношении 1:2 и выдержанные в помете в течении 15 дней, согласно изобретению в качестве микробных культур используют Pseudomonas putida 90 биовар А (171), депонированная в ВКПМ под № В-4492 и Azotobacter chroococcum 31/8 R, депонированная в ВКПМ под № В-4148 с начальным титром не менее 1,0×109 КОЕ/мл и взятых в объемном соотношении 1: 1 из расчета не менее 4,0% каждой культуры на массу подстилочного помета цыплят-бройлеров и смешивают их с пометом, а затем формируют в бурты.

Новизна заявляемого технического решения обусловлена тем, что при внесении микробных культур рода Pseudomonas и Azotobacter в подстилочный помет цыплят-бройлеров в качестве микроорганизмов используют Pseudomonas putida 90 биовар А (171), депонированная в ВКПМ под № В-4492 и Azotobacter chroococcum 31/8 R, депонированная в ВКПМ под № В-4148.

Признаки, отличающие заявляемое техническое решение от прототипа, направлены на достижение технического результата и не выявлены при изучении данной и смежной областей науки и техники и, следовательно, соответствуют критерию «изобретательский уровень».

Эти отличия позволяют сделать вывод о соответствии заявляемых технических решений критерию «новизна».

Соответствие заявляемого решения критерию патентоспособности «промышленная применимость» обусловлено тем, что предлагаемое техническое решение работоспособно и возможно его использование при переработке подстилочного помета цыплят-бройлеров для получения высокоэффективного органического удобрения.

Способ переработки подстилочного помета цыплят-бройлеров осуществляется следующим образом.

Для переработки подстилочного помета цыплят-бройлеров используют Pseudomonas putida 90 биовар А (171), депонированная в ВКПМ под № В-4492 и Azotobacter chroococcum 31/8 R, депонированная в ВКПМ под № В-4148 с начальным титром не менее 1,0×109 КОЕ/мл, взятых в объемном соотношении 1:1 из расчета не менее 4,0% каждой культуры на массу подстилочного помета цыплят-бройлеров. Культуры были подобраны в результате экспериментальных исследований.

В ходе экспериментальных исследований на первом этапе проводили изучение протеолитической активности взятых для опытов культур микроорганизмов. Протеолитическую способность штаммов-продуцентов изучали согласно ГОСТ 20264.2-88. Результаты исследований представлены в таблице 1.

Результаты изучения ферментативной активности показали, что все штаммы обладают протеолитическими свойствами, так как в той или иной степени продуцировали протеазы. Однако, наибольшую протеолитическую активность продемонстрировал штамм Pseudomonas putida 90 биовар А (171), которая составила 74,6 ед/г., что было выше, чем у Bacillus licheniformis Л-34 на 12,9 ед/г., а по сравнению с Pseudomonas putida АТСС 12633 на 16,4 ед/г.

Далее проводилось изучение действия культур исследуемых микроорганизмов на биоразложение подстилочного помета цыплят-бройлеров в течении 30 дней, при этом в качестве анализируемых показателей регистрировались общее микробное число (ОМЧ) и содержание аммонийного азота, каждые пять дней. Для исследований использовали активную микробную культуру взятых для экспериментов штаммов с титром клеток не менее 109 КОЕ/мл. При внесении культур в титре менее 109 КОЕ/мл не будет обеспечиваться повышения в помете значения ОМЧ и снижения уровня аммонийного азота. При внесении культур в титре более 109 КОЕ/мл будет обеспечиваться аналогичное повышение в помете значения ОМЧ и снижение уровня аммонийного азота, поэтому нет смысла брать больше. Зависимость биоконверсии подстилочного помета цыплят-бройлеров от времени обработки и используемой культуры микроорганизма представлена в таблице 2.

По результатам исследований (таблица 2) установлено, что наибольшее количество микробных клеток в подстилочном помете цыплят-бройлеров достигнуто при использовании микробной культуры Pseudomonas putida 90 биовар А (171), которое от начало исследований было 104 КОЕ/мл, а к 15-м суткам составило 1011 КОЕ/мл, а далее титр микрофлоры во всех случаях перестал повышаться, что скорее всего обусловлено прекращением действия ферментного комплекса протеолитических микроорганизмов, обеспечивающего активное питание как аборигенной, так и исследуемой микробной культуры.

При анализе содержания аммонийного азота в подстилочном помете цыплят-бройлеров выявлено максимальное уменьшение исследуемого показателя к 15-20-м суткам от начала обработки, что коррелирует с динамикой увеличения общего числа микроорганизмов. Наименьший уровень аммонийного азота был зафиксирован при обработке подстилочного помета цыплят-бройлеров микробной культурой Pseudomonas putida 90 биовар А (171), данный показатель с 319 мг/л от начало обработки снизился до 113 мг/л.

Анализируемые показатели подстилочного помета цыплят-бройлеров не обработанного микробной культурой в течении эксперимента существенно не изменились.

Таким образом, результаты исследований показали, что наиболее перспективной культурой для биоконверсии подстилочного помета цыплят-бройлеров из исследуемых коллекционных штаммов является протеолитический штамм-продуцент Pseudomonas putida 90 биовар А (171), при этом, установлено, что оптимальное время выдерживания побочной продукции птицеводства, обработанной данной культурой составляет 15 дней.

Затем проводился подбор дозы внесения протеолитической культуры Pseudomonas putida 90 биовар А (171) в подстилочный помет цыплят-бройлеров. Доза внесения культуры варьировала от 1,0 до 10,0%. Установлено, что при внесении микробной культуры Pseudomonas putida 90 биовар А (171) в дозе менее 4,0% от массы подстилочного помета цыплят-бройлеров не будет обеспечиваться повышения в помете значения ОМЧ и снижения уровня аммонийного азота. При внесении культур в дозе более 4,0% будет обеспечиваться аналогичное повышение в помете значения ОМЧ и снижение уровня аммонийного азота, поэтому нет смысла брать больше.

На следующем этапе исследований проводили скрининг бактерий рода Azotobacter коллекционных штаммов по анализу содержания аммиачного азота в окружающей среде над опытными партиями подстилочного помета цыплят-бройлеров обработанного активными экспериментальными микробными культурами с титром клеток не менее 109 КОЕ/мл. При внесении культур в титре менее 109 КОЕ/мл не будет обеспечиваться снижения уровня аммиака в окружающей среде над пометом. При внесении культур в титре более 109 КОЕ/мл будет обеспечиваться аналогичное снижение уровня аммиака в окружающей среде над пометом, поэтому не смысла брать больше. Для анализа аммиачного азота в окружающей среде использовали универсальный газоанализатор УГ-2. Результаты исследований представлены в таблице 3.

При изучении уровня аммиака, выделяющегося из подстилочного помета цыплят-бройлеров установлено, что на первый день эксперимента содержание газа над побочным продуктов птицеводства составляло 73 мг/м3, что является выше уровня предела допустимой концентрации. Наилучшую фиксирующую способность атмосферного азота продемонстрировал лишь один штамм - Azotobacter chroococcum 31/8 R. Установлено, что на 15-й день эксперимента уровень аммиака над обработанным подстилочным пометом цыплят-бройлеров микробной культурой Azotobacter chroococcum 31/8 R снизился до 10 мг/м3, что является ниже уровня предела допустимой концентрации (ПДК) для данного соединения в окружающей среде. На 20, 25 и 30 сутки исследований содержание аммиачного азота в данной группе оставалось ниже уровня ПДК, но изменения по сравнению с 15-и сутками были незначительны. В остальных исследуемых вариантах, изменения наблюдались, однако ни в одной из экспериментальной партии не было зафиксировано содержание аммиачного азота ниже значения предела допустимой концентрации (20 мг/м).

Таким образом, результаты исследований продемонстрировали, что из исследуемых коллекционных микроорганизмов наилучшую азотфиксирующую способность проявила микробная культура Azotobacter chroococcum 31/8 R.

Далее проводился подбор дозы внесения азотфиксирующей культуры Azotobacter chroococcum 31/8 R в подстилочный помет цыплят-бройлеров. Доза внесения культуры варьировала от 1,0 до 10,0%. Установлено, что при внесении микробной культуры Azotobacter chroococcum 31/8 R дозе менее 4,0% от массы подстилочного помета цыплят-бройлеров не будет обеспечиваться снижения уровня аммиака в окружающей среде над пометом. При внесении культур в дозе более 4,0% будет обеспечиваться аналогичное снижение уровня аммиака в окружающей среде над пометом, поэтому не смысла брать больше.

На следующем этапе исследований проводился поиск оптимального соотношения протеолитической микробной культуры Pseudomonas putida 90 биовар А (171) и азотфиксирующего штамма Azotobacter chroococcum 31/8 R при обработке подстилочного помета цыплят-бройлеров. Эксперимент длился в течении 15-и суток с изучением ряда показателей, характеризующих процесс биотрансформации подстилочного помета цыплят-бройлеров.

Обработку помета осуществляли активными формами микробных культур Pseudomonas putida 90 биовар А (171) и Azotobacter chroococcum 31/8 R предварительно разбавленные с водой 1:2 с начальным титром не менее 1,0×109 КОЕ/мл из расчета не менее 4,0% каждой культуры на массу подстилочного помета цыплят-бройлеров и смешивали их с пометом, а затем формировали в бурты. Результаты исследований представлены в таблице 4.

Данные влияния совместного использования микробных штаммов Pseudomonas putida 90 биовар А (171) и Azotobacter chroococcum 31/8 R на эффективность биодеструкции подстилочного помета цыплят-бройлеров и его санитарно-биологические показатели (таблица 4) продемонстрировали, что более оптимальный и стабильный результат был выявлен при обработке помета культурами микроорганизмов в соотношением 1:1. Предлагаемый технологический прием позволяет в течении 15-и суток снизить уровень аммонийного азота в помете с 312 мг/л до 103 мг/л, содержание аммиака в окружающей среде с 75 мг/м3 до 13 мг/м3, индекс бактерий группы кишечных палочек с 3 до 1 ед, индекс энтерококков с 2 до 0 ед, индекс патогенных микроорганизмов (Salmonella, Staphylococcus) с 3 до 0 ед, количество яйц и личинок гельминтов, преимущественно кокцидий, с 3 до 0 экземпляров, количество личинок синантропных мух с 4 до 0 экземпляров при одновременном повышение общего микробного числа до значения не менее 1011 кл/г.

Подстилочный помет цыплят-бройлеров не обработанный исследуемыми микробными культурами существенных изменений в течении срока эксперимента по изучаемым показателям не приобрел.

Пример конкретного осуществления способа переработки подстилочного помета цыплят-бройлеров.

Пример 1. Для изучения эффективности применения заявленного способа проводился хозяйственный эксперимент, предусматривающий обработку культурами подстилочного помета цыплят-бройлеров, содержащихся в фермерских хозяйствах Краснодарского края.

Для постановки экспериментов на изолированных площадках фермерских хозяйств оборудованных под пометохранилище была организована и проведена обработка 1 тонны подстилочного помета цыплят-бройлеров. Перед формированием опытных буртов помет птиц обрабатывался микробными культурам Pseudomonas putida 90 биовар А (171) и Azotobacter chroococcum 31/8 R предварительно каждые разбавленные с водой 1:2 с начальным титром не менее 1,0×109 КОЕ/мл в объемном соотношении 1:1 из расчета не менее 4,0% или 40 л каждой культуры на 1 т подстилочного помета цыплят-бройлеров и смешивали их с пометом, а затем формировали в бурты. В течении исследований проводился физико-химический и санитарно-бактериологический контроль исходного птичьего помета и конечного продукта согласно ГОСТ 31461-2012, а также изучался уровень аммиачного азота над опытными буртами и общее микробное число.

Результаты исследований представлены в таблице 5. При проведении исследований помет обработанный согласно заявленному способу при визуальном наблюдении постепенно менял свой цвет, а также агрегатное состояние. Даже без применения универсального газоанализатора чувствовалось снижение в окружающей внешней среде запаха аммиака. Опытные партии помета, обработанные согласно способу соответствовали требованиям ГОСТ 31461-2012.

Из данных таблицы 5 видно, что не обработанный подстилочный помет цыплят-бройлеров за время исследований не показал результатов, которые бы соответствовали требованиям нормативного документа. При этом содержание аммиачного азота во внешней среде было в 4 раза выше, чем в опытной партии и находилось выше уровня предела допустимой концентрации. Общее микробное число в не обработанном помете на 15-е сутки оставалось как и в исходном побочном продукте.

В целом помет птиц, не обработанный в соответствии с предлагаемым способом, не претерпел явных изменений, оставался в том же фазовом состоянии как и в начале исследований, а также издавал зловонный, неприятный аммиачный запах, что наносит негативное влияние на окружающую среду.

Дополнительно в конце исследований (на 15-е сутки) расчетным методом проводилось изучение класса опасности обработанного и не обработанного помета птиц. Установлено, что показатель степени опасности не обработанного подстилочного помета, полученного от цыплят-бройлеров составил 21,74, что относится к IV классу опасности. Однако, принимая во внимание нормативно-утвержденный наиболее высокий класс опасности, данный вид отхода подлежит отнесению к III классу опасности (умеренно опасные).

Показатель степени опасности обработанного подстилочного помета, полученного от цыплят-бройлеров составил 8,97, что относится к V классу опасности, однако, так же, принимая во внимание нормативно-утвержденный наиболее высокий класс опасности, данный вид отхода подлежит отнесению к IV классу опасности (малоопасные).

Таким образом, обработка подстилочного помета цыплят-бройлеров согласно заявленному способу, способствует улучшению физико-химических и санитарно-бактериологических характеристик конечного продукта, стимулирует рост специфической аборигенной микрофлоры помета, обеспечивающей его биодеструкцию, снижает уровень аммиачного азота в окружающей среде, а также снижает класс опасности, что в совокупности дает возможность использовать данный побочный продукт птицеводства в качестве органического сырья, используемого при производстве удобрений.

Пример 2. Изучалось применение переработанного подстилочного помета цыплят-бройлеров согласно заявленному способу в качестве органического биоудобрения для огурца.

Схема проведенного научно-хозяйственного опыта представлена ниже:

- контрольная группа - без применения испытуемых органических удобрений;

- переработанный подстилочный помет цыплят-бройлеров согласно заявленному способу - внесение в почву, доза - 1,0 кг/м2, 1-я опытная группа;

- переработанный подстилочный помет цыплят-бройлеров согласно заявленному способу - внесение в почву, доза - 2,0 кг/м2, 2-я опытная группа;

- переработанный подстилочный помет цыплят-бройлеров согласно заявленному способу - внесение в почву, доза - 3,0 кг/м2, 3-я опытная группа.

Учетная площадь делянок - 10 м2, повторность - четырехкратная.

Согласно схемы опыта, испытуемое органическое удобрение разбрасывали по поверхности почвы и сразу заделывали в нее мелкой перепашкой на глубину 10-15 см неделю до высадки рассады. Выравненную рассаду, имеющую 2-3 настоящих листа и зеленые семядольные листья, с хорошо развитой корневой системой, высаживали рядковым способом с междурядьем 1 м и в ряду 3-х растения на 1 погонный метр. Все мероприятия по уходу за растениями (рыхление междурядий, полив, борьба с сорной растительностью, сбор урожая) проводились вручную. Влажность почвы поддерживали на уровне 85% от наименьшей влагоемкости.

Растительные образцы для определения количества и длины побегов, числа и площади листьев, биомассы и сухой массы надземных органов отбирали в начале плодоношения. Сбор плодов проводили через каждые два дня при достижении ими стандартного размера и определения при этом диаметра, длины и массы каждого плода. В массовый сбор плодов в них определяли содержание сахара и витамина С (Иванов, Н.Н. Методы физиологии и биохимии растений. 4-е изд., исправ. и доп. - М. - Л.: Сельхозгиз, 1946. - 493 с.). Урожайность определяли по сумме сборов плодов с учетной площади.

Из данных таблицы 6 видно, что внесение в почву испытуемых органических удобрений - птичьего помета за неделю до высадки рассады огурца в грунт, обеспечив растения необходимыми и доступными для них элементами питания, стимулировало побегообразование (общее число побегов - 7,3-8,8 шт., в контроле - 5,9 шт./растение, в т.ч. 1-го порядка - 5,8-6,7 и 4,8 шт., 2-го порядка - 1,5-2,1 и 1,1 шт.), их рост в длину (длина главного побега - 109,5-124,4 см, в контроле - 101,1 см). Существенное увеличение значений морфологических параметров обусловило повышение сырой и сухой массы надземных органов (биомасса - 378,82-443,74 г, в контроле - 311,32 г, сухая масса - 59,47-68,34 и 48,57 г/растение соответственно).

Важное место в получении высокого урожая отводится нарастанию листового аппарата, накоплению в них ассимилятов и рациональному перераспределению последних в репродуктивные органы - плоды огурца (таблица 7).

Результаты исследований (таблица 7) показали, что во всех опытных вариантах процесс листообразования протекал более активно. Под действием испытуемых удобрений формировалось большее число листьев (24,2-28,7 шт., в контроле - 20,9 шт./растение), более крупных по размеру, что проявилось в увеличении листовой поверхности (35,18-38,92 дм2/растение, в контроле - 30,16 дм2/растение). Наибольший прирост числа и площади листьев отмечен в варианте с применением в технологии возделывания огурца переработанного помета цыплят-бройлеров в дозе 2,0 кг/м2.

Формирование в указанном варианте наиболее мощных растений связано с созданием в них оптимального режима питания, что положительно сказывается на плодообразовании. Результаты влияния исследуемых удобрений на плодообразование растений огурца представлены в таблице 8.

Использование в технологии возделывания огурца испытуемых органических удобрений в качестве основного удобрения, оптимизировав режим минерального питания, способствовало формированию большего числа плодов на кусте (16,7-18,8 шт., в контроле - 14,9 шт.), более крупных по размеру (диаметр - 2,8-3,1 см, в контроле - 2,6 см, длина - 12,4-13,5 и 11,8 см) и массе (82,01-84,46 г, в контроле - 78,82 г). И как видно из данных таблицы 8, максимальный сбор плодов с куста отмечен в варианте с применением переработанного помета птицы - 1,588 кг, против - 1,174 кг в контроле (без применения).

Увеличение числа и сбора плодов с куста обусловило получение высокого урожая и повышение качества плодов (таблица 9).

Анализ данных таблицы 9 показывает, что применение в качестве основного удобрения птичьего помета, усилив ростовые и продукционные процессы существенно повысило урожайность плодов огурца и их качество. Прибавка урожая в опытных вариантах составила 16,7-28,4%, при урожайности в контроле - 3,522 кг/м. В плодах огурца возросло содержание сахара (2,2-2,4%, в контроле - 2,0%) и витамина С (11,0-11,5, в контроле - 10,4 мг %).

Таким образом, проведенные агротехнологические приемы продемонстрировали, что высокая биологическая эффективность испытуемых органических удобрений (переработанного подстилочного помета цыплят-бройлеров) на исследуемой культуре обусловлена получением высокого урожая качественных плодов огурца. При урожайности в контроле огурца - 3,522 кг/м2, максимальная прибавка 28,4% отмечена в варианте с применением испытуемого удобрения в дозе 2,0 кг/м2. В указанном варианте получены плоды высокого качества.

Способ переработки подстилочного помета цыплят-бройлеров, включающий внесение микробных культур рода Pseudomonas и Azotobacter, предварительно каждая разбавленная с водой в соотношении 1:2 и выдержанная в помете в течение 15 дней, отличающийся тем, что в качестве микробных культур используют Pseudomonas putida 90 биовар А (171), депонированная в ВКПМ под № В-4492, и Azotobacter chroococcum 31/8 R, депонированная в ВКПМ под № В-4148 с начальным титром не менее 1,0×109 КОЕ/мл, и взятых в объемном соотношении 1:1 из расчета не менее 4,0% каждой культуры на массу подстилочного помета цыплят-бройлеров, и смешивают их с пометом, а затем формируют в бурты.



 

Похожие патенты:

Изобретение относится к биотехнологии. Предложен препарат для переработки органических отходов быта человека, животноводства и птицеводства, содержащий микроорганизмы Bacillus subtilis ВКПМ В-4190, Bacillus licheniformis ВКПМ В-2985, Bacillus fastidiosus ВКПМ В-11090, Paenibacillus polimyxa ВКПМ В-3015, Pseudomonas oleoverans ВКПМ В-8621, Nocardia sp.
Изобретение относится к химической промышленности и к сельскому хозяйству, а именно к технологии переработки осадков городских сточных вод, навоза и помета. В качестве основы препарата на основе растительного сырья для обработки осадков сточных вод и/или отходов сельского хозяйства, выбранных из навоза, помета, с целью их дезинфекции и гигиенизации применяют основу препарата, содержащую взятые в мас.%: растительное сырье в виде зерна риса или зерна пшеницы 8,9-15,2, сульфат меди пятиводный 0,1-0,8, щелочь 1,7-4, вода остальное.
Изобретение относится к химической промышленности и к сельскому хозяйству, а именно к технологии переработки осадков городских сточных вод, навоза и помета. Осуществляют способ получения плодородного субстрата, заключающийся в обработке осадков сточных вод до получения комковатой массы препаратом на основе растительного сырья для обработки осадков сточных вод, при котором обрабатывают осадки сточных вод препаратом, полученным с использованием основы препарата, содержащей в мас.%: растительное сырье в виде зерна риса или зерна пшеницы 8,9-15,2, сульфат меди пятиводный 0,1-0,8, щелочь 1,7-4, вода - остальное.
Изобретение относится к химической промышленности и к сельскому хозяйству, а именно к технологии переработки осадков городских сточных вод, навоза и помета. Осуществляют способ обработки осадков сточных вод или сельскохозяйственных отходов, выбранных из навоза, помета, с целью их дезинфекции и гигиенизации препаратом на основе растительного сырья для обработки осадков сточных вод, при котором обрабатывают осадки сточных вод препаратом, полученным с использованием основы препарата, содержащей взятые в мас.%: растительное сырье в виде зерна риса или зерна пшеницы 8,9-15,2, сульфат меди пятиводный 0,1-0,8, щелочь 1,7-4, вода - остальное.
Изобретение относится к химической промышленности и к сельскому хозяйству, а именно к технологии переработки осадков городских сточных вод, навоза и помета. Основа препарата для обработки осадков сточных вод и/или отходов сельского хозяйства, выбранных из навоза, помета, с целью их дезинфекции и гигиенизации, содержит взятые в мас.

Изобретение относится к сельскому хозяйству и может быть использовано при переработке побочных отходов птицеводческих хозяйств для получения органического удобрения. Способ переработки подстилочного перепелиного помета включает внесение микробных культур рода Pseudomonas и Azotobacter, предварительно каждая разбавленная водой в соотношении 1:2 и выдержанные в помете в течение 15 дней.

Изобретение относится к сельскому хозяйству и может быть использовано при переработке побочных отходов птицеводческих хозяйств для получения органического удобрения. Способ переработки нативного перепелиного помета включает внесение микробных культур рода Pseudomonas и Azotobacter, предварительно каждая разбавленная водой в соотношении 1:2 и выдержанные в помете в течение 15 дней.

Изобретение относится к области полеводства, прежде всего способам восстановления и воспроизводства плодородия черноземов в условиях богарного и орошаемого земледелия. Способ включает использование органического удобрения, в качестве которого используют органический почвоулучшитель в дозе 500-1000 л/га с содержанием органических веществ не менее 15%, полученный на основе вермикомпоста в виде смеси навоза КРС и отработанных блоков после выращивания Pleurotus ostreatus из соломы, древесной стружки, мицелия Pleurotus ostreatus.
Способ получения гуминового удобрения включает смешивание навозной жижи и подстилочного материала на основе соломы из телятников с силосом или свежескошенной травой в количестве 5-10% от общего объема смеси. Далее способ предусматривает измельчение полученной смеси, аэрацию воздухом в течение 40-60 мин, подачу на диспергатор, прессование на фильтр-прессе до получения кека с долей сухих веществ не менее 45%.

Изобретение относится к области мелиорации и охраны земельных и водных ресурсов и может быть использовано для круглогодичной и непрерывной утилизации жидкой фракции навоза для повышения плодородия почв дождеванием. В способе непрерывной утилизации жидкой фракции навоза КРС, включающем получение жидкой фракции навоза и ее аэробную обработку в биореакторах, согласно изобретению осуществляют фильтрование навоза от мусора через сита с ячейками размером 2×2 см или 5×5 см, в зависимости от загрязнения навоза, затем его доводят до влажности 88-92% путем добавления воды, гомогенизируют и проводят сепарацию навоза для разделения его на твердую фракцию и жидкую, которую дезинфицируют и самотеком отправляют в биореакторы для аэробной обработки.
Способ переработки целлюлозосодержащих отходов заключается в том, что механически измельченные до дисперсности 10-12 мм и увлажненные до 55-65% целлюлозосодержащие отходы подвергают биоконверсии личинками двукрылого насекомого Hermetia illucens в присутствии обогащенного натриевой солью карбоксиметилцеллюлозы микробного комплекса, включающего Myceliophthora thermophila, Thielavia terrestris, Thermoactinomyces vulgaris, а также Cellulomonas sp.
Наверх