Способ создания сенсора для детектирования водорода

Изобретение относится к электроизмерительной технике, в частности к датчикам измерения состава окружающей среды при высоких температурах и может быть использовано для обнаружения утечек водорода и предотвращения создания взрывоопасной воздушно-водородной смеси при использовании в водородной энергетике. Способ создания сенсора для детектирования водорода включает размещение образца из 4H-SiC в вакуумной камере, создание вакуума с последующим нанесением пленки Ni методом импульсного лазерного осаждения с последующим отжигом образца в вакууме и охлаждением образца до комнатной температуры, поворот образца другой стороной и повторное создание вакуума, напуск рабочего газа до давления 25 Па и нагрев изделия с последующим нанесением основной пленки W18O49 методом импульсного лазерного осаждения, затем создают вакуум и наносят поверх пленки W18O49 каталитическую пленку, после чего охлаждают и извлекают образец, при этом после создания вакуума до остаточного давления 10-5 Па наносят слой Ni толщиной до 100 нм в течение времени до 10 мин, затем проводят отжиг образца при температурах 500-1000°С в течение времени не менее 30 мин с последующим охлаждением образца до комнатной температуры и поворотом образца другой стороной, после поворота образца и повторного создания вакуума поверхность образца нагревают до температуры 350-800°С и затем наносят дополнительный слой ВС3 толщиной 50-100 нм при давлении 10-5 Па методом импульсного лазерного осаждения путем лазерной абляции композитной мишени, состоящей из бора и углерода в отношении 1:3, далее напускают кислород до давления 25 Па и осаждают основную пленку W18O49 толщиной до 500 нм в течение времени до 60 мин, после чего создают вакуум и наносят каталитический слой Pd при давлении 10-5 Па толщиной до 50 нм в течение времени до 1,0 мин. Изобретение обеспечивает возможность создать сенсор, обладающий повышенной чувствительностью к водороду при температурах свыше 300°С и увеличенным сроком службы, за счет увеличения толщины чувствительной к водороду пленки и улучшения ее адгезионных свойств. 3 ил.

 

Изобретение относится к электроизмерительной технике, в частности к датчикам измерения состава окружающей среды при высоких температурах и может быть использовано для обнаружения утечек водорода и предотвращении создания взрывоопасной воздушно-водородной смеси при использовании в водородной энергетике.

Известен способ создания сенсора для детектирования водорода [1], в котором каталитический электрод выполнен в виде слоя из нанотрубок оксида титана, на которые нанесен металл платиновой группы. Добавка металла платиновой группы может быть выполнена в виде нанокластеров (10-50 нм) платины. А нанотрубки для каталитического чувствительного электрода готовят методом высокотемпературного изотермического испарения хлоридного флюса, содержащего исходные прекурсоры, после чего нанотрубки платинируют разложением гексахлорплатиновой кислоты, а сенсор собирают в корпусе, одновременно являющемся пресс-формой, методом послойного прессования порошков. Основным недостатком данного сенсора является использование в качестве рабочего электрода нанотрубок оксида титана, имеющего очень плохую чувствительность к водороду при повышенных (более 300°С) температурах.

Наиболее близким по технической сущности и принятым в качестве прототипа является способ создания сенсора для детектирования водорода [2], включающий в себя нагрев подложки из 4H-SiC до температуры ~ 600°С и нанесение на нее пленки, чувствительной к водороду, из W18O49 толщиной ~ 200 нм методом импульсного лазерного осаждения при давлении 25 Па при использовании в качестве рабочего газа воздух, затем нанесение на поверхность пленки из W18O49 платины в качестве каталитического слоя.

До нанесения пленки из W18O49 на обратную поверхность подложки из 4H-SiC наносили никель методом импульсного лазерного осаждения, отжигали при температуре ~ 900°С в течении 15 минут и дополнительно наносили платину.

Основными недостатками такого способа является небольшой срок службы сенсора вследствие малой толщины основного чувствительного к водороду слоя W18O49, а также плохой его адгезии к подложке.

Технический результат изобретения направлен на повышение чувствительности сенсора к водороду и увеличению срока его службы, за счет увеличения толщины чувствительной к водороду пленки и улучшения ее адгезионных свойств.

Технический результат достигается способом создания сенсора для детектирования водорода, включающим размещение образца из 4H-SiC в вакуумной камере, создание вакуума с последующим нанесением пленки Ni методом импульсного лазерного осаждения путем лазерной абляции металлической никелевой мишени, далее проводят отжиг образца с никелевым покрытием в вакууме и последующим охлаждением образца до комнатной температуры, после чего осуществляют поворот образца другой стороной и повторное создание вакуума, затем осуществляют напуск рабочего газа до давления 25 Па и нагрев изделия с последующим нанесением основной пленки W18O49 методом импульсного лазерного осаждения путем лазерной абляции металлической вольфрамовой мишени, далее создают вакуум и наносят поверх пленки W18O49 каталитическую пленку методом импульсного лазерного осаждения путем лазерной абляции металлической мишени, после чего охлаждают и извлекают образец. Способ отличается тем, что после создания вакуума до остаточного давления 10-5 Па наносят слой Ni толщиной до 100 нм в течение времени до 10 мин, затем проводят отжиг образца при температурах 500-1000°С в течение времени не менее 30 мин с последующим охлаждением образца до комнатной температуры и поворотом образца другой стороной, после поворота образца и повторного создания вакуума поверхность образца нагревают до температуры 350-800°С и затем наносят дополнительный слой ВС3 толщиной 50-100 нм при давлении 10-5 Па методом импульсного лазерного осаждения путем лазерной абляции композитной мишени, состоящей из бора и углерода в отношении 1:3, далее напускают кислород до давления 25 Па и осаждают основную пленку W18O49 толщиной до 500 нм в течение времени до 60 мин, после чего создают вакуум и наносят каталитический слой Pd при давлении 10-5 Па толщиной до 50 нм в течение времени до 1,0 мин.

Технический результат достигается благодаря следующему.

В качестве материала для основной пленки был выбран W18O49, обладающий хорошей чувствительностью к водороду при температурах свыше 300°С.

Увеличение толщины чувствительной к водороду пленки W18O49 до 500 нм приводит к повышению чувствительности сенсора к водороду и увеличению срока его службы.

Отжиг образца с нанесенной пленкой никеля при давлении 10-5 Па, температурах 500-1000°С в течение времени не менее 30 мин позволяет атомам никеля глубже проникнуть в слой карбида кремния и улучшить адгезию нанесенного слоя. При температурах ниже 500°С диффузия мала, при температуре свыше 1000°С происходят структурные изменения в никеле.

Нанесение дополнительного слоя ВС3 толщиной 50-100 нм приводит к улучшению адгезии основного чувствительного к водороду слоя W18O49 к подложке и позволяет увеличить толщину основного слоя в 2,5 раза, что приводит к увеличению срока службы сенсора.

Осаждение основной пленки W18O49 на нагретую до 350-800°С поверхность образца с нанесенными на нее пленками никеля и карбида бора позволяет улучшить адгезию и создать пленку необходимой кристаллической структуры. При температуре подложки с нанесенными на нее пленками никеля и карбида бора ниже 350°С формируется аморфная пленка WxOy, обладающая плохой чувствительностью к водороду, при температурах свыше 800°С начинает формироваться вольфрамовая бронза, также снижающая чувствительность сенсора к водороду.

Нанесение пленки W18O49 в кислороде при давлении 25 Па позволяет увеличить толщину наносимого слоя и создать необходимую кристаллическую структуру, не изменяя энергетические параметры лазера.

В качестве материала для каталитического слоя был выбран палладий, обладающий лучшим коэффициентом распыления по сравнению с платиной, что сокращает по времени процесс нанесения при тех же самых энергетических параметрах лазера и без ухудшения каталитических свойств по отношению к водороду.

Совокупность всех перечисленных выше признаков позволяет разработку способа создания сенсора для детектирования водорода в окружающей среде, обладающего повышенной чувствительностью к водороду при температурах свыше 300°С и увеличенным сроком службы, за счет увеличения толщины чувствительной к водороду пленки и улучшения ее адгезионных свойств.

Сущность изобретения поясняется чертежами, где проиллюстрирован заявляемый способ:

на фиг. 1 показана принципиальная схема осуществления способа;

на фиг. 2 представлена схема измерения сенсорных характеристик;

на фиг. 3 диаграмма зависимости измеренной разности потенциалов от содержания водорода в воздухе;

На фиг. 1 обозначено: образец 1, держатель из нержавеющей стали 2, вакуумная камера 3, мишень 4, лазер 5, омический нагреватель 6.

На фиг. 2 обозначено: 7 - нагреватель, 8 - сапфир (Al2O3), 9 - золото (Au), 10 - сенсор (Pd/W18O49/BC3/SiC/Ni), 11 - пленка никеля (Ni), 12 -подложка 4H-SiC, 13 - W18O49, 14 - палладий (Pd), 15 - графитовые иглы.

Пример конкретного осуществления способа.

В качестве образца была использована пластина из 4H-SiC размерами 10×10 мм и толщиной 450 мкм. Предварительно одна сторона образца полировалась, другая сторона - шлифовалась. Далее обработка образца осуществлялась в ультразвуковой ванне в среде изопропилового спирта в течение 10 минут.

Образец 1 размещался на держателе 2 шлифованной стороной вверх, а полированной стороной вниз, и с помощью держателя вводился в вакуумную камеру 3 на расстоянии 40 мм от мишени 4. Мишень 4 состояла из четырех пластинок размерами 10×10×1 мм. Первая пластинка была изготовлена из никеля, вторая пластинка - из вольфрама, третья пластинка - из палладия, четвертая пластинка представляла собой композит, состоящий из бора и углерода в отношении 1:3. Вакуумная камера 3 откачивалась насосом до остаточного давления 10-5 Па. Далее наносили Ni методом импульсного лазерного осаждения путем лазерной абляции никелевой пластинки в мишени. Энергия лазерного излучения была в пределе ~50 мДж, а плотность энергии в пятне фокусировки ~9 Дж/см2. В качестве источника лазерного излучения использовался лазер 5 с длиной волны 266 нм, длительностью 10 нс и частотой следования импульсов 20 Гц. Нанесение покрытия производилось в течение времени 10 мин. Толщина покрытия составила 100 нм. Далее проводили отжиг при температуре 700°С в течение времени 45 мин. Нагрев образца до необходимой температуры осуществлялся с помощью встроенного в держатель образца омического нагревателя 6. Контроль температуры осуществляли термопарой хромель-алюмель, расположенной на держателе образца. После нанесения покрытия образец охлаждали до комнатной температуры и разворачивали полированной стороной вверх. Далее вакуумную камеру откачивали до давления 10-5 Па и нагревали поверхность образца 1 с помощью омического нагревателя 6 до температуры 700°С. После чего наносили дополнительный слой ВС3 толщиной 80 нм при давлении 10-5 Па методом импульсного лазерного осаждения путем лазерной абляции композитной пластинки мишени. Далее, в вакуумную камеру напускали кислород до давления 25 Па и осаждали пленку W18O49 толщиной 400 нм в течение времени 40 мин, после чего вакуумную камеру откачивали до давления 10-5 Па и наносили каталитический слой Pd толщиной 20 нм в течение времени 1 мин.

Для проверки работоспособности полученного описанным выше способом сенсора 10, он помещался в камеру из нержавеющей стали и устанавливался на пластине сапфира 8 с тонким покрытием золота 9 (См. Фиг. 2). Сапфировая пластинка 8 являлась изолятором между сенсором и нагревателем. Тонкий слой золота 9, напыленный на одну из плоскостей сапфировой пластины, дает возможность проводить электрофизические измерения. Электрофизические и сенсорные измерения проводилось в диапазоне температур 22-350°С на воздухе и в смеси воздуха с водородом. Стабилизированные значение температуры контролировались подключенным к ПК датчиком температур. Нагрев до 350°С осуществлялся тэновым нагревателем 7. Концентрация водорода в воздушной смеси варьировалась от 0,5 до 2% от объема камеры. В качестве электрических контактов использовались графитовые иглы 15, диаметр которых составлял ~ 400 мкм. Диаметр иглы на несколько порядков превышали толщину пленки W18O49. Этот факт позволил предполагать, что токопрохождение в основном происходило через плоскопараллельные слои и не выходило за область, образованную диаметром иглы.

Для измерения сенсорных свойств полученной структуры сенсора (Pd/W18O49/BC3/SiC/Ni) (Фиг. 2) последовательно к исследуемому образцу подключалось нагрузочное сопротивление RH. Регистрация сигнала напряжения на нагрузочном сопротивлении RH дифференциальным вольтметром В2-34 давала информацию об образовавшейся, при различии температур, в следствии взаимодействия сенсора (Pd/W18O49/BC3/SiC/Ni) с водородосодержащей средой, величины разности потенциалов между верхней и нижней плоскостями образца. В воздушной среде между плоскостью на которую нанесен слой Ni и плоскостью с нанесенным слоем Pd существует разность потенциалов, которая составляет ~100 μВ. При напуске водорода до концентрации 2% от объема камеры разность потенциалов возрастала до значения ~1000 μВ. На Фиг. 3 приведены диаграммы полученной разности потенциалов в зависимости от концентрации водорода в воздухе.

Таким образом, был разработан способ создания сенсора для детектирования водорода в окружающей среде, обладающего повышенной чувствительностью к водороду при температурах свыше 300°С и увеличенным сроком службы, за счет увеличения толщины чувствительной к водороду пленки и улучшения ее адгезионных свойств.

Список использованных источников:

1. RU 2371713, 27.10.2009.

2. Fominski V. et al. Comparison of hydrogen detection by WOx/SiC and Pt/WOx/SiC structures using amperometric and potentiometric modes of measurement. // Thin Solid Films. - 2019. - Vol. 669. - P. 461-470.

Способ создания сенсора для детектирования водорода, включающий размещение образца из 4H-SiC в вакуумной камере, создание вакуума с последующим нанесением пленки Ni методом импульсного лазерного осаждения путем лазерной абляции металлической никелевой мишени, далее проводят отжиг образца с никелевым покрытием в вакууме с последующим охлаждением образца до комнатной температуры, после чего осуществляют поворот образца другой стороной и повторное создание вакуума, затем осуществляют напуск рабочего газа до давления 25 Па и нагрев изделия с последующим нанесением основной пленки W18O49 методом импульсного лазерного осаждения путем лазерной абляции металлической вольфрамовой мишени, далее создают вакуум и наносят поверх пленки W18O49 каталитическую пленку методом импульсного лазерного осаждения путем лазерной абляции металлической мишени, после чего охлаждают и извлекают образец, отличающийся тем, что после создания вакуума до остаточного давления 10-5 Па наносят слой Ni толщиной до 100 нм в течение времени до 10 мин, затем проводят отжиг образца при температурах 500-1000°С в течение времени не менее 30 мин с последующим охлаждением образца до комнатной температуры и поворотом образца другой стороной, после поворота образца и повторного создания вакуума поверхность образца нагревают до температуры 350-800°С и затем наносят дополнительный слой ВС3 толщиной 50-100 нм при давлении 10-5 Па методом импульсного лазерного осаждения путем лазерной абляции композитной мишени, состоящей из бора и углерода в отношении 1:3, далее напускают кислород до давления 25 Па и осаждают основную пленку W18O49 толщиной до 500 нм в течение времени до 60 мин, после чего создают вакуум и наносят каталитический слой Pd при давлении 10-5 Па толщиной до 50 нм в течение времени до 1,0 мин.



 

Похожие патенты:

Изобретение относится к медицине, в частности к способу оценки качества рогового слоя клеточных моделей кожи человека (КМКЧ). Способ по настоящему изобретению включает экспериментальное определение диапазона нормативных значений величины электрического сопротивления для данного типа КМКЧ (конкретного вида продукции), измеренного методом TEER, и последующую тотальную оценку всех КМКЧ в составе производственных партий этого диапазона.

Изобретение относится к ядерной энергетике, в частности к средствам измерения окислительно-восстановительного потенциала расплавов солей на основе LiF-BeF2 жидко-солевого реактора (ЖСР), и может быть использовано для исследования коррозионной стойкости конструкционных материалов кого типа реакторов. Устройство измерения окислительно-восстановительного потенциала расплавленных солей содержит электрически изолированные друг от друга с помощью нитрида бора молибденовую подложку динамического бериллиевого электрода и молибденовый индикаторный электрод, представляющие собой молибденовые стержни, а также противоэлектрод, при этом противоэлектрод выполнен в виде трубы из плотного графита, молибденовые стержни размещены в двухканальной алундовой соломке, которая помещена в стальную трубку, соединенную с противоэлектродом для обеспечения токоподвода к нему, при этом площадь поверхности противоэлектрода, предназначенной для погружения в расплав, не менее чем в 5 раз превышает площадь погружаемой в расплав поверхности молибденовой подложки динамического бериллиевого электрода, при том что бериллиевый электрод сравнения расположен внутри противоэлектрода, а молибденовый индикаторный электрод выступает наружу из противоэлектрода на глубину, зафиксированную таким образом, чтобы расстояние от его торца до торца противоэлектрода было не менее одного диаметра противоэлектрода.

Изобретение относится к меченому нуклеотиду для секвенирования нуклеиновых кислот, к способу секвенирования нуклеиновых кислот с его использованием и к набору для секвенирования нуклеиновых кислот. Предлагаемый меченый нуклеотид содержит нуклеотид, связывающую группу, присоединенную к фосфатной группе указанного нуклеотида, и редокс-активную зарядную метку, присоединенную к связывающей группе, причем указанная редокс-активная зарядная метка подлежит окислению или восстановлению посредством токопроводящего канала при удерживании вблизи чувствительной зоны токопроводящего канала.

Группа изобретений относится к биотехнологии. Представлено устройство для обнаружения нуклеотидов, содержащее проводящий канал и от одной до пяти молекул полимеразы, присоединенных к проводящему каналу.

Изобретение относится к измерительной технике и служит для неразрушающего контроля обрывов внешних и внутренних стрендов в мультистрендовых канатах и протяженных шихтованных структурах. Технический результат заключается в повышении соотношения сигнал/помеха за счет сужения зоны контроля, выравнивании порога чувствительности к дефектам во внешнем и внутренних слоях стрендовых канатов.

Группа изобретений относится к области сенсорной техники и нанотехнологий, в частности к изготовлению газовых сенсоров и газоаналитических мультисенсорных линеек хеморезистивного типа. Конструкция газового сенсора включает диэлектрическую подложку, расположенные на подложке компланарные полосковые электроды, терморезисторы, нагреватели, и газочувствительный слой, разделенный на два или более сегмента, каждый из которых сформирован на основе отличных по своему химическому составу графеновых материалов, у которых при комнатной или повышенной температуре изменяется сопротивление под воздействием примесей органических паров или паров воды в окружающем воздухе.

Способ для определения загрязнения биодатчика, в котором биодатчик загружается в тестовый измерительный прибор, и после этого проба применяется. Первое и второе предварительно определенные тестовые напряжения прикладываются между разнесенными электродами биодатчика для соответствующих первого и второго предварительно определенных временных интервалов.

Изобретение относится к измерительной технике и может быть использовано в измерительных устройствах для контроля окружающей среды, измерения концентраций и нахождения течей вредных и дорогостоящих газов, контроля герметичности изделий, содержащих вредные химические вещества, и других устройств, применяемых в различных отраслях промышленности, в научных исследованиях.

Группа изобретений может применяться в отрасли нефтегазодобывающей промышленности и инженерной геофизике. Способ исследования пористых образцов реализуется следующим образом: манжета с размещенным в ней пористым образцом зажимается устройством обеспечения давления с двух сторон, инжектирующие и измерительные электроды в манжете подключаются к пористому образцу и к коммутатору, соединенному с аналого-цифровым преобразователем и источником тока.

Группа изобретений относится к опорам аппаратов, а именно к шасси с колесами, для применения в качестве следящего устройства в сканерах неразрушающего контроля. Измерительный модуль дефектоскопа содержит искательную головку с дефектоскопным преобразователем, шасси и узлом поворота шасси.

Способ и устройство контроля концентрации газов в воздухе относится к средствам мониторинга окружающей среды, а именно к средствам контроля концентрации газов в окружающем воздухе. Задача изобретения состоит в контроле концентрации газов в воздухе в реальных условия при наличии широкого спектра газов.
Наверх