Устройство для определения электрофизических характеристик образцов из термоэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано при создании устройств преобразования тепловой энергии в электрическую. Технический результат: расширение функциональных возможностей устройства определения электрофизических характеристик. Сущность: устройство для определения электрофизических характеристик образцов из термоэлектрических материалов содержит рабочую камеру для размещения исследуемого образца, полость которой соединена с системой вакуумирования и заполнения различными газами, нагреватель одной из поверхностей исследуемого образца, соединенный с источником питания постоянного тока, температурными датчиками и программатором температур, система охлаждения противоположной нагреваемой поверхности исследуемого образца, узел для обеспечения теплового контакта нагреваемой и охлаждаемой поверхности исследуемого образца с нагревателем и охлаждаемой зоной камеры соответственно, измерительный блок, включающий вольтметр и омметр. В качестве системы охлаждения используют проточное водяное охлаждение. В измерительный блок дополнительно входит магазин сопротивлений с возможностью подключения к электрической цепи измерительного блока различных по величине сопротивлений для снятия вольт-амперной характеристики исследуемого образца. Узел для обеспечения надежного теплового контакта выполняют в виде пружинного блока с крепежными элементами с возможностью изменения силы сжатия образца. В качестве газа рабочей камеры может быть использован ксенон. 1 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к измерительной техники при создании устройств преобразования тепловой энергии в электрическую.

Развитие термоэлектрической энергетики связано, в первую очередь, с разработкой новых измерительных методик и устройств, предназначенных для получения рабочих характеристик термоэлектрических материалов (ТЭМ) и полупроводниковых термоэлектрических батарей (ПТЭБ). Это позволит выявлять наиболее перспективные материалы и технологии их изготовления. В конечном итоге это поможет выйти на изготовление полупроводниковых термоэлектрических батарей нового поколения с улучшенными характеристиками.

Наиболее близким к предлагаемому техническому решению является устройство для измерения дифференциального (т.е. при малом перепаде температуры) коэффициента термо-ЭДС и удельной электропроводности (Методы и устройства измерения термо-ЭДС и электропроводности термоэлектрических материалов при высоких температурах. А.Т. Бурков, А.И. Федотов, А.А. Касьянов, Р.И. Пантелеев, Т. Накама. Научно-технический вестник информационных технологий, механики и оптики, 2015, т. 15, №2, стр. 173-195). Одной из важных частей установки является держатель образцов, размещаемый внутри вакуумной камеры, которая может откачиваться с помощью турбомолекулярного насоса до вакуума порядка 10-4 Па. Камера заполняется газообразным гелием до давления несколько выше атмосферного. Основой держателя являются две коаксиальные трубки из высокотемпературной стали, которые смонтированы на вакуумном фланце. Внутренняя трубка крепится на верхней части фланца. Градиентная печка, поддерживающая пластина и радиатор крепятся на другом конце внутренней трубки. Внешняя трубка центрируется относительно внутренней трубки с помощью стальных дисков, которые монтируются на внутренней трубке на расстоянии около 50 мм друг от друга. Стальная поддерживающая пластина располагается между градиентным нагревателем и радиатором, изготовленными из молибдена. Выбор в качестве материала для нагревателя и радиатора молибдена обусловлено большой теплопроводностью и механической стабильностью при высоких температурах. Образец прижимается к поддерживающей пластине с помощью рычага, прижимной пластины и стальной пружины. Эти детали выполнены из специальной высокотемпературной стали. Температура образца и разности потенциалов на образце измеряются с помощью термопар.

Недостатком данного устройства является то, что оно используется только для определения электрофизических характеристик образцов термоэлектрических материалов. При разработке новых ПТЭБ необходимо определять электрофизические характеристики изделия, в частности, вольт-амперную характеристику ПТЭБ. Кроме того, устройство не обеспечивает измерение интегрального термо-ЭДС (т.е. ЭДС при значительном перепаде температуры между торцами образца материала).

Задачей настоящего изобретения является обеспечение определения характеристик не только образцов термоэлектрических материалов, но и вновь разрабатываемых изделий - ПТЭБ.

Техническим результатом заявляемого изобретения является расширение функциональных возможностей устройства определения электрофизических характеристик.

Указанный технический результат достигается тем, что в устройстве для определения электрофизических характеристик образцов из термоэлектрических материалов, содержащем рабочую камеру для размещения исследуемого образца, которая соединена с системой вакуумирования и заполнения различными газами, нагреватель одной из поверхностей исследуемого образца, соединенный с источником питания постоянного тока, температурными датчиками и программатором температур, система охлаждения противоположной нагреваемой поверхности исследуемого образца, узел для обеспечения теплового контакта нагреваемой и охлаждаемой поверхности исследуемого образца с нагревателем и охлаждаемой зоной камеры соответственно, измерительный блок, включающий вольметр и омметр, новым является то, что в качестве системы охлаждения используют проточное водяное охлаждение, дополнительно в измерительный блок входит магазин сопротивлений, с возможностью подключения к электрической цепи измерительного блока различных по величине сопротивлений для снятия вольт-амперной характеристики исследуемого образца, причем узел для обеспечения теплового контакта выполняют в виде пружинного блока с крепежными элементами с возможностью изменения силы сжатия образца.

В качестве газа рабочей камеры может быть использован ксенон.

Наличие отличительных признаков позволяет заявляемому устройству производить измерение не только дифференциального, но и интегрального термо-ЭДС, которое осуществляется посредством реализации контакта термоэлектрической ветви (столбика) с нагревателем (с одной стороны) и охлаждаемым днищем камеры, с другой стороны.

Кроме того, реализована возможность получения характеристик не только ТЭМ, но и изготавливаемых из ТЭМ батарей ПТЭБ.

На фиг. 1 представлена блок-схема устройства для определения электрофизических характеристик образцов из термоэлектрических материалов, на фиг. 2, 3 - рабочие характеристики ПТЭБ, где:

1 - ПТЭБ; 2 - нагреватель; 3, 4 - разъемы; 5- система охлаждения; 6, 7 - вакуумметры; 8 - система вакуумирования; 9 - баллон с рабочим газом; 10 - программатор; 11 - преобразователь интерфейса; 12 - магазин сопротивлений; 13 - вольтметр; 14 - компьютер блока управления; 15 - источник постоянного тока; 16 - омметр; 17 - печь нагревателя.

Примером конкретного выполнения заявляемого устройства может служить стенд для определения электрофизических характеристик термоэлектрических материалов и полупроводниковых термоэлектрических батарей.

Стенд включает рабочую камеру для размещения исследуемого образца -среднетемпературной батареи ПТЭБ. Камера включает медное водоохлаждаемое основание для установки на нем батареи ПТЭБ. Нагреватель размещен в рабочей камере на одной из поверхностей ПТЭБи соединен с печью лабораторной Nabertherm RT50/250/13. Камера снабжена шаровым разъемом ШР1 для подсоединения программного регулятора температуры термодат-17Е6/4УВ. Разъем ШР2 - для соединения с магазином сопротивлений 0,2 - 15,0 Ом и источником постоянного тока Б5-101. Система охлаждения выполнена в виде проточного водяного охлаждения и представляет собой теплопровод, проходящий под днищем рабочей камеры. Система вакуумирования включает вакуумметр Мерадат-ВИТ-19ИТ2, вакуумметр модель 1227, вакуумную установку с насосами вакуумным НВР-5Д и диффузионным Н-0.5. Полость рабочей камеры заполняется ксеноном (Хе) из газового баллона. Вакуумметр Мерадат-ВИТ-19ИТ211, Термодат-17Е6/4УВ через преобразователь интерфейса USB/RS485 типа СК201 подключен к компьютеру ноутбук типа ACER блока управления. Измерительный блок включает универсальный вольтметр В7-58/2, омметр цифровой HIOKI RM3543.

Основной характеристикой батарей ПТЭБ является их вольт-амперная характеристика ВАХ, которая определяется следующим образом.

Помещаем батарею ПТЭБ 1 на медное водоохлаждаемое днище рабочей камеры, устанавливаем на это днище термопару КТХА, на горячий спай батареи ПТЭБ помещаем медную пластину с установленной в ней термопарой КТХА и нагревателем 2, включаем магистраль водяного охлаждения 5 и производим нагрев батареи 1 по программе, задаваемой терморегулятором термодат-17Е6/4УВ 10, до достижения на горячем спае требуемой температуры. Далее выполняется снятие вольт-амперной характеристики (ВАХ) путем последовательного переключения сопротивления внешней нагрузки 12 от значения 5.0 Ом до 0.2 Ом с выдерживанием на каждой нагрузке в течение 10 мин и записью значений "ток-напряжение" на момент окончания каждой из этих временных выдержек, и по полученным значениям "ток-напряжение" строится ВАХ в EXCEL (фиг. 2, 3). В таблице 1 приведены полученным значениям "ток-напряжение".

Калибровка по электросопротивлению применяемого измерительного средства -цифрового омметра HIOKI RM3543 производилась с применением эталонного средства измерений «Мера электрического сопротивления постоянного тока многозначная Р3026-1 регистрационный номер 8478-91», свидетельство о поверке №09-30/590-2018-0727-20. Диапазон эталонных сопротивлений - от 10-3 Ом до 106 Ом. Выполнены калибровочные опыты по определению дифференциального коэффициента термо-ЭДС. Для чистой меди - эталона при температуре 300 К значение дифференциального коэффициента термо-ЭДС должно быть равно α=1,83 мкВ/К. Измеренные значения для эталонного образца при повторных измерениях α=1,80 мкВ/К; 1,94 мкВ/К; 1,89 мкВ/К; 1,90 мкВ/К; 1,89 мкВ/К.

Проведены опыты по определению интегрального коэффициента термо-ЭДС α для образца перспективного термоэлектрического материала - антимонида цинка Zn4Sb3. Значение измеренного интегрального коэффициента термо-ЭДС составило α=142,80 мкВ/К при перепаде температуры ΔТ=252,1°С. Для данного перепада температуры в литературе [Получение и свойства термоэлектрического материала на основе Zn4Sb3 / Панченко В.П., Табачкова Н.Ю., Иванов А.А., Сенатулин Б.Р. и др. // Физика и техника полупроводников - 2017 - т. 51, №6. - С. 748 - 751] приведены значения интегрального термо-ЭДС от 140 до 175 мкВ/К, что хорошо согласуется с нашими результатами.

Таким образом, результаты проведенных измерений рабочих характеристик ПТЭБ и термоэлектрических ветвей показали, что стенд А0718-2 Г380 является надежным инструментом для аттестации ПТЭБ и определения характеристик термоэлектрических материалов.

1. Устройство для определения электрофизических характеристик образцов из термоэлектрических материалов, содержащее рабочую камеру для размещения исследуемого образца, полость которой соединена с системой вакуумирования и заполнения различными газами, нагреватель одной из поверхностей исследуемого образца, соединенный с источником питания постоянного тока, температурными датчиками и программатором температур, система охлаждения поверхности исследуемого образца, противоположной нагреваемой, узел для обеспечения теплового контакта нагреваемой и охлаждаемой поверхности исследуемого образца с нагревателем и охлаждаемой зоной камеры соответственно, измерительный блок, включающий вольтметр и омметр, отличающееся тем, что в качестве системы охлаждения используют проточное водяное охлаждение, дополнительно в измерительный блок входит магазин сопротивлений с возможностью подключения к электрической цепи измерительного блока различных по величине сопротивлений для снятия вольт-амперной характеристики исследуемого образца, причем узел для обеспечения теплового контакта выполняют в виде пружинного блока с крепежными элементами с возможностью изменения силы сжатия образца.

2. Устройство по п. 1, отличающееся тем, что в качестве газа в рабочей камере используют ксенон.



 

Похожие патенты:

Изобретение может быть использовано при изготовлении термоэлектрических охладителей, применяемых в радиоэлектронике, медицине и устройствах, которые эксплуатируются преимущественно в условиях многократного термоциклирования. Формируют плоскую заготовку из термоэлектрического материала.

Изобретение относится к области термоэлектрического преобразования энергии, а именно к устройству термоэлектрического преобразования, сделанному из кремнийсодержащего материала, и к способу его изготовления. Сущность: термоэлектрическое устройство включает в себя активные элементы, содержащие термоэлектрические материалы из кремния, сплава кремния, силицида металла или композита кремния, и зону межсоединения, состоящую из металлического межсоединения и рекристаллизованной фазы, состоящей из материала активных термоэлектрических элементов.

Изобретение относится к термоэлектрическому приборостроению и может быть использовано для изготовления защитных покрытий при производстве термоэлементов. Сущность: способ включает механическую обработку, ионное травление поверхности термоэлектрического материала (ТЭМ) и нанесение плазмохимическим методом защитного покрытия в виде тонких пленок диоксида или нитрида кремния.

Изобретение относится к области прямого преобразования тепловой энергии в электрическую, в частности к способу изготовления термоэлектрических генераторов, применяемых либо для установки на корпус двигателя летательного аппарата, либо для изготовления непосредственно самого корпуса двигателя летательного аппарата с получением при этом дополнительной электрической мощности.

Изобретение относится к термоэлектрическому приборостроению и может быть использовано для изготовления контактов в производстве термоэлементов. Способ включает механическую обработку, химическую обработку поверхности ТЭМ и химическое осаждение никеля из электролита.

Изобретение относится к эпитаксиальной технологии производства термоэлектрических преобразователей с термоэлектрическим элементом в виде тонкой пленки высшего силицида марганца. Технический результат: повышение стабильности эксплуатационных свойств термоэлектрического элемента, определяемых его повышенной термоэлектрической добротностью в расширенном температурном интервале, устранение паразитной проводимости подложки при температуре выше 300°С, снижение ее теплопроводности и повышение радиационной стойкости.

Изобретение относится к области прямого преобразования тепловой энергии в электрическую, а именно к технологии получения ветвей термоэлементов методом порошковой металлургии. Сущность: размещают порошкообразный прессуемый материал в нагреваемой пресс-форме между матрицей и подвижными пуансонами, размещают пресс-форму под прессом и прикладывают к пуансонам давление прессования в течение определенного времени.

Изобретение относится к технологии получения полупроводникового низкотемпературного термоэлектрического материала электронного типа проводимости и может быть использовано при создании высокоэффективных термоэлектрических генераторных и охлаждающих модулей. Сущность: способ характеризуется тем, что легирование индием материала Bi2Te2,7Se0,3 осуществляют на стадии сольвотермально-микроволнового синтеза.

Изобретение относится к термоэлектрическому оборудованию и может быть использовано при производстве термоэлектрических генераторов. Сущность: способ изготовления высокотемпературного термоэлемента с рабочими температурами от 300 до 1000°С, состоящего из двух полупроводниковых ветвей n- и p-типа проводимости, верхние грани которых соединены общей коммутирующей шиной, а к каждой нижней грани ветвей подсоединена своя индивидуальная коммутирующая шина, включает подготовку поверхностей верхней и нижней граней ветвей термоэлемента, создание контактных систем, состоящих из контактных слоев, между гранями ветвей термоэлемента и коммутирующими шинами.

Изобретение относится к технологии обработки полупроводниковых термоэлектрических материалов и может быть использовано при создании высокоэффективных термоэлектрических генераторных батарей и охладительных устройств. Сущность изобретения состоит в том, что увеличение добротности и упрощение технологии изготовления термоэлектрического материала достигается фотонной обработкой поверхности горячепрессованного материала в среде инертного газа пакетами импульсов излучения ксеноновых ламп с длительностью импульсов 10-2 с в течение 1,0-1,4 с при плотности энергии излучения, поступающей на поверхность полупроводника в диапазоне 125-175 Дж⋅см-2.
Наверх