Теплоаккумулирующий состав на основе эвтектической смеси пентагидрата тиосульфата натрия и тригидрата ацетата натрия

Изобретение относится к теплоаккумулирующим материалам, способным к хранению и отдаче тепла за счет фазопереходных процессов, которые могут применяться в системах подогрева в температурном диапазоне 30-45°С. Предложен теплоаккумулирующий состав на основе эвтектической смеси пентагидрата тиосульфата натрия и тригидрата ацетата натрия, состоящий из 30% мас. тригидрата ацетата натрия CH3COONa⋅3H2O, 70% мас. пентагидрата тиосульфата натрия Na2S2O3⋅5H2O с добавками в виде 1% мас. расширенного графита (EG), 2% мас. поливинилового спирта (ПВС), характеризующийся температурами фазового перехода при плавлении и кристаллизации, переохлаждением не выше 3°С, временем аккумуляции, обеспечивающими работоспособность материала в качестве теплоаккумулирующего состава между 30 и 45°С, и приготовленный путем плавления эвтектической смеси пентагидрата тиосульфата натрия и тригидрата ацетата натрия в течение 20 мин с постоянным перемешиванием до полного расплавления и последующим добавлением расширенного графита, перемешиванием в течение 20 минут и добавлением поливинилового спирта, после чего перемешивание продолжают в течение одного часа с контролем температуры 60°С. Технический результат – предложенный фазопереходный теплоаккумулирующий состав характеризуется отсутствием фазовой сегрегации, снижением переохлаждения до 2.8°С, достижением температуры фазового перехода 41.8°С. 7 ил., 3 табл.

 

Изобретение относится к теплоаккумулирующим материалам, способным к хранению и отдаче тепла за счет фазопереходных процессов и могут применяться в системах подогрева в температурном диапазоне 30-45°С.

Преимуществом использования тригидрата ацетата натрия является высокая энтальпия фазового перехода. Тем не менее, тригидрат ацетата натрия имеет аномально высокую величину переохлаждения, достигающую 80°, инконгруэнтный тип плавления, а вероятность стеклования не позволяет использовать вещество в нужном температурном диапазоне.

Имеется эффективный теплоаккумулирующий состав, предложенный авторами в патенте RU 2188842 C1 (дата приоритета: 10.09.2002), состоящий из фазопереходной смеси и добавки, контролирующей кристаллизацию при высоком переохлаждении для целей сохранения тепла при низких температурах. Причем авторы предлагают составы двух типов с различным фазопереходным материалом, состоящим из смеси тригидрата ацетата натрия и дигидрата ацетата лития в соотношениях 90-99:1-10 соответственно, либо из смеси тригидрата ацетата натрия и тетрагидрата ацетата магния в соотношении 85-95:5-15 соответственно. Общее содержание фазопереходной смеси и кристаллизационного модификатора составляет 90-99:1-10 соответственно. Материал создан для работы при низких температурах и имеет переохлаждение вплоть до 90°, а плавится при 48-50 °С в зависимости от соотношения компонентов. В работе не исследуется время аккумулирования, теплоемкость, плотность аккумулирования тепла и плотность твердой и жидкой фаз. Высокое переохлаждение не позволяет использовать данный материал в заявленном температурном диапазоне 30-45°С.

Известен еще один состав на основе тригидрата ацетата натрия (RU 2430262 С1. Дата приоритета: 27.09.2011), к которому на 100 грамм добавляется 2-3 г пищевого желатина, 2-3 г хлорида натрия и 1-2 г гидроксида натрия. Авторы указывают, что температура плавления состава составила 76°С, при этом поглощение тепла начинается уже при 50 °С. Переохлаждение материала составляет более 80°. В работе не исследуются время аккумулирования, энтальпии плавления и кристаллизации, теплоемкость, плотность аккумулирования тепла и плотность твердой и жидкой фаз. Высокое переохлаждение не позволяет использовать данный материал в заявленном температурном диапазоне 30-45 °С.

Наиболее близким к предлагаемому изобретения является состав тригидрата ацетата натрия и декагидрата пирофосфата натрия (Международный патент EP0049092B1, дата приоритета 9.05.1984; US4406804A, дата приоритета 27.09.1983) в соотношениях не выше 60:40 соответственно. Авторами при 1000 циклах было достигнуто переохлаждение не выше 4° без указания температуры плавления. Также многих теплофизических и термодинамических характеристик (плотность твердой и жидкой фаз, плотность аккумулирования тепла, время аккумуляции, теплоемкость твердой и жидкой фаз, вязкости) измерено не было. Поэтому невозможно сделать вывод о применении данного состава для использования в заявленном температурном диапазоне 30-45°С.

Таким образом, к недостаткам всех вышеописанных патентов можно отнести отсутствие экспериментальных данных о плотности твердой и жидкой фаз, вязкости, теплоемкости твердой и жидкой фаз и плотности аккумулирования энергии, и затруднение их расчетов в связи с отсутствием информации о способе исследования материалов. Кроме того, лишь в некоторых работах переохлаждение рассматривается как влияющий на эффективность работы теплоаккумулирующего состава фактор. Однако ни в одной из работ не приведена аккумулирующая способность полученных смесей.

Задачей предлагаемого изобретения является минимизация фазовой сегрегации и переохлаждения, не превышающего 3°С, теплоаккумулирующего состава на основе эвтектической смеси пентагидрата тиосульфата натрия и тригидрата ацетата натрия, а также измерение его энтальпии плавления, времени аккумуляции, температуры плавления и кристаллизации, плотности и теплоемкости твердой и жидкой фаз, динамической и кинематической вязкости, плотности аккумулирования тепла.

При осуществлении данного изобретения, создается технический результат, который заключается в отсутствии у фазопереходного теплоаккумулирующего состава фазовой сегрегации, снижении переохлаждения до 2.8°, достижения температуры фазового перехода 41.8°С.

Технический результат достигается за счет того, что теплоаккумулирующий состав является эвтектическим и включает дополнительные вещества - расширенный графит (EG) для повышения теплоемкости и уменьшения переохлаждения, и поливиниловый спирт (ПВС), устраняющий фазовую сегрегацию. Это позволяет создать эвтектическую смесь с конгруэнтным плавлением и температурой плавления в температурном диапазоне 30-45°С.

Изобретение поясняется чертежами, где:

Фиг. 1 - КР-спектр состава;

Фиг. 2 - объединенный КР-спектр компонентов состава;

Фиг. 3 - кривая ДСК для состава;

Фиг. 4 - теплоемкость состава;

Фиг. 5 - кривая ТИ для состава;

Фиг. 6 - вязкость состава при 55 °С;

Фиг. 7 - вязкость состава при 70 °С.

Состав:

(70% Na2S2O3⋅5H2O + 30% CH3COONa·3H2O) + 1% EG + 2% ПВС

Эвтектическую смесь Na2S2O3⋅5H2O и CH3COONa·3H2O общей массой 5.25 г взвешивали и плавили в течение 20 минут при постоянном перемешивании до полного расплавления, после чего добавляли расширенный графит (EG), перемешивали 20 минут, а затем засыпали поливиниловый спирт (ПВС) и продолжали перемешивание еще в течение одного часа, контролируя температуру в 60°С. Приготовленная смесь хранилась в эксикаторе для предотвращения поглощения излишек влаги.

На фиг. 1 представлен спектр комбинационного рассеяния состава, а на фиг. 2 представлены спектры чистых веществ, являющихся компонентами теплоаккумулирующего состава. Фиг. 1 показывает, что химического взаимодействия между компонентами состава при нагревании не произошло, что подтверждается отсутствием пиков, не характерных для чистых веществ на фиг. 2.

Для подтверждения свойств синтезированных материалов методом дифференциальной сканирующей калориметрии (ДСК) исследованы температура и энтальпия плавления. На фиг. 3 изображена кривая ДСК, на которой представлена энтальпия плавления, равная 213.5 Дж/г, а температура фазового перехода составляет 41.8 °С.

Условия эксперимента методом ДСК:

• Минимальная температура нагрева, °C, 20;

• Максимальная температура нагрева, °C, 75;

• Скорость нагрева, °C/мин: 10;

• Атмосфера, N2;

• Скорость охлаждения, °C/мин: 2;

• Газ для охлаждения, N2;

• Скорость подачи газа мл/мин, 40.

Теплоемкость твердой фазы при 30 °С составила 2.46 Дж/(г⋅К), а теплоемкость жидкой фазы, измеренной при 80 °С - 9.53 Дж/(г⋅К). На фиг. 4 представлен график, на котором можно наблюдать изменение теплоемкости при нагревании от 8 до 92 °С.

Анализ методом температурной истории проводился в кварцевой пробирке объемом 30 мл, которая была заполнена на 2/3 при естественных условиях охлаждения. На фиг. 5 представлен график температурной истории для теплоаккумулирующего состава. У синтезированного состава присутствует небольшое переохлаждение в 2.8°С. Время отдачи тепла составило 33.9 минуты. Значение температуры кристаллизации составило 32°С. Все результаты представлены в таблице 1.

Таблица 1. Физико-химические характеристики состава по результатам ДСК и ТИ
Состав Измерение методом ДСК Измерение методом температурной истории
Tпл эксп. ДСК, °С ΔHпл,
эксп. ДСК
Дж/г
Cp
ж.ф.
(68°С) Дж/(г∙К)
Cp
тв.ф.
(30°С)
Дж/г∙К
ΔT.
эксп.,
°С
Tкр.
эксп,
°С
tаккум, мин
(70% Na2S2O3·5H2O + 30% CH3COONa⋅3H2O) + 1% EG + 2% ПВС 41.8 213.5 9.53 2.46 2.8 32 33.9

На фиг. 6 и фиг. 7 представлены зависимости вязкости состава от вращения металлического стержня при 55 и 70 °С. По выходу графика на плато видно, что динамическая вязкость составляет 755 и 281 мПа⋅с при 55 и 70°С, соответственно. Плотность твердой и жидкой фаз составляет 1.05 и 1.47 г/см3, соответственно. По результатам измерения динамической вязкости и плотности жидкой фазы, была рассчитана кинематическая вязкость. Ее значения при 55 и 70°С составляют 0.51 и 0.19 м2/с, соответственно. Все результаты сведены в таблицу 2.

Таблица 2. Физико-химические характеристики состава по результатам измерения вязкости
Состав T,°С μ,
мПа∙с
Δ = ±10%
ν, м2
(70% Na2S2O3⋅5H2O + 30% CH3COONa⋅3H2O) + 1% EG + 2% ПВС 55 755 0.51
70 281 0.19

Плотность жидкой фазы составила 1.47 г/см3 при 70°С, а плотность твердой фазы - 1.05 г/см3. Плотность аккумулирования тепла составила 313.8 МДж/м3.

Таблица 3. Расчетные параметры состава по экспериментальным данным
Состав S
МДж/м3
ρж.ф.,
г/см3
ρтв.ф.,
г/см3
(70% Na2S2O3⋅5H2O + 30% CH3COONa⋅3H2O) + 1% EG + 2% ПВС 313.8 1.47 1.05

Таким образом, благодаря добавлению к эвтектической смеси пентагидрата тиосульфата натрия и тригидрата ацетата натрия добавок ПВС и EG, удалось добиться переохлаждения в 2.8° и времени аккумуляции, достигающего 33.9 минут в естественных условиях охлаждения, что позволяет использовать материал в температурном диапазоне 30-45°С. Теплоемкость жидкой фазы в 9.53 Дж/(г⋅К), плотность аккумулирования тепла, равная 313.8 МДж/м3 и энтальпия плавления, составляющая 213.5 Дж/г подтверждают хорошую аккумулирующую способность состава, поэтому материал пригоден для использования в качестве теплоаккумулирующего состава.

Теплоаккумулирующий состав на основе эвтектической смеси пентагидрата тиосульфата натрия и тригидрата ацетата натрия, состоящий из 30% мас. тригидрата ацетата натрия CH3COONa·3H2O, 70% мас. пентагидрата тиосульфата натрия Na2S2O3·5H2O с добавками в виде 1% мас. расширенного графита (EG), 2% мас. поливинилового спирта (ПВС), характеризующийся температурами фазового перехода при плавлении и кристаллизации, переохлаждением не выше 3°С, временем аккумуляции, обеспечивающими работоспособность материала в качестве теплоаккумулирующего состава между 30 и 45°С, и приготовленный путем плавления эвтектической смеси пентагидрата тиосульфата натрия и тригидрата ацетата натрия в течение 20 мин с постоянным перемешиванием до полного расплавления и последующим добавлением расширенного графита, перемешиванием в течение 20 минут и добавлением поливинилового спирта, после чего перемешивание продолжают в течение одного часа с контролем температуры 60°С.



 

Похожие патенты:

Изобретение относится к области производства теплопроводных материалов. Предложена теплопроводная кремнийорганическая паста на основе полидиметилсилоксана для сопряжения теплонапряженных устройств и деталей, содержащая в качестве наполнителя углеродные нанотрубки, отличающаяся тем, что последние с помощью перемешивания равномерно распределены в объёме пасты в количестве от 0,1% об.
Изобретение относится к области создания теплопроводных материалов и может быть использовано для сопряжения различных теплонапряженных устройств и деталей. Теплопроводная паста содержит теплопроводный неорганический наполнитель в виде графитового порошка, полученного как из графита природного происхождения, так и из графита, полученного искусственным путем в количестве 22.6-52,6 мас.

Изобретение относится к теплорассеивающим диэлектрическим полимерным композиционным материалам для различных отраслей электроники (микроэлектроника, вакуумные приборы, плазменные и лазерные технологии). Соответствующие теплорассеивающие конструкционные материалы используются в том числе для изготовления радиаторов охлаждения и теплорассеивающих корпусов.

Настоящее изобретение относится к теплопроводным пастам, содержащим смесь синтетического и силиконового масел и смесь теплопроводных наполнителей. Композиционный теплопроводящий материал на основе наножидкости может быть использован в качестве теплоносителя для создания новых теплоэнергетических установок, тепловых межфазных материалов (МТВ).

Группа изобретений относится к поддержанию температуры текучих сред в трубах даже при прерывании потока текучих сред. В способе на первом этапе создают накапливающий тепло слой (1), содержащий аккумулирующий скрытое тепло материал (2) и матричный материал (3).

Группа изобретений относится к вариантам выполнения системы для нагревания курительного материала. Система для нагревания курительного материала содержит устройство для нагревания курительного материала с целью испарения по меньшей мере одного компонента этого курительного материала.

Изобретение относится к области химической технологии и может быть использовано в производстве охлаждающих жидкостей, предназначенных для системы охлаждения двигателей внутреннего сгорания автомобилей, сельскохозяйственных машин, специальной техники, в качестве теплоносителя в различных теплообменных аппаратах, эксплуатируемых при низких и крайне низких температурах.

Изобретение относится к антифризам - низкозамерзающим охлаждающим жидкостям и может быть использовано для охлаждения двигателей внутреннего сгорания транспортных средств, специальной техники, а также в качестве теплоносителя в теплообменных аппаратах. Описанная охлаждающая жидкость для автомобильной техники включает мас.%: этиленгликоль или смесь этиленгликоля с ди-, триэтиленгликолем и/или с глицерином 46,608-94,418; антивспениватель (полидиметисилоксан с вязкостью от 50 до 500 мм2/с) 0,002-0,005; индикатор рН из ряда флуороновых красителей 0,0004-0,001; в качестве антикоррозионных присадок: двухосновная органическая кислота из ряда бутандиовая, пентандиовая, гександиовая, гептандиовая, октандиовая, нонандиовая, декандиовая и/или их смесь и/или одноосновная органическая кислота из ряда пентановая, гексановая, гептановая, 2-этилгексановая, октановая и/или бензойная кислота или смесь этих кислот 0,863-2,440; молибденсодержащие соли щелочных металлов из ряда молибдат натрия, молибдат лития, молибдат калия и/или молибдат аммония или их смесь 0,055-0,136; гидроксиды щелочных металлов из ряда гидроксид натрия, гидроксид лития, гидроксид калия или их смесь 0,411-0,839; трилон Б (динатриевая соль этилендиаминтетрауксусной кислоты) 0,0017-0,0034; бензотриазол и/или его производные 0,132-0,292; полициклические амины из ряда уротропина и его производных 0,195-0,406; метасиликаты щелочных металлов, например, из ряда метасиликат натрия пятиводный, метасиликат калия пятиводный 0,03-0,087; нитраты щелочных металлов из ряда нитрат натрия, нитрат калия, нитрат лития 0,101-0,244; бура пятиводная 0,38-0,878; вода 2,5866-52,060.

Настоящее изобретение относится к композиции хладагента, включающей в себя дифторметан (HFC-32), пентафторэтан (HFC-125) и трифториодметан (CF3I), для использования в системе теплообмена, включающей в себя системы кондиционирования воздуха и холодильные установки, и в частности к аспектам использования таких композиций в качестве замены хладагента R-410A в системах нагрева и охлаждения, а также для модернизации систем теплообмена, включая системы, предназначенные для использования с хладагентом R-410A.
Изобретение относится к области теплопроводящих диэлектрических материалов и может найти применение при изготовлении теплоотводящих прокладок, лент, герметиков, заливочных компаундов для электротехнических и электронных устройств, изделий силовой электроники, портативных устройств, блоков электропитания и силовых преобразователей, в которых необходимо обеспечить теплоотвод от теплонагруженных элементов и узлов.

Группа изобретений относится к поддержанию температуры текучих сред в трубах даже при прерывании потока текучих сред. В способе на первом этапе создают накапливающий тепло слой (1), содержащий аккумулирующий скрытое тепло материал (2) и матричный материал (3).
Наверх