Люминесцентный способ определения тербия с ципролетом



G01N2021/634 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2784340:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) (RU)

Изобретение относится к аналитической химии, в частности к способам люминесцентного определения тербия. Тербий переводят в люминесцирующее комплексное соединение с органическим реагентом (R) - ципролетом. Соотношение Тb:R=1:2 при рН=5,9±0,1. Технический результат – повышение точности, а также возможность одновременно определять Tb, Dy, Sm, Eu в оксидах лантаноидов. 3 ил.

 

Изобретение относится к аналитической химии, в частности к способам люминесцентного определения тербия, и может быть использовано для определения следовых количеств тербия при анализе высокочистых лантанидов.

Известны способы люминесцентного определения тербия в комплексе с органическими реагентами:

Патент РФ № 2412435 «Люминесцентный способ определения тербия». Изобретение относится к области аналитической химии - к способам люминесцентного определения тербия, и может быть использовано для определения следовых количеств тербия при анализе высококачественных лантанидов и в природных водах. В качестве комплексообразователя используется органический реагент (R) - дифениловый эфир сульфосалициловой кислоты (ДЭСК), и в раствор люминесцирующего комплексного соединения тербия с ДЭСК приливают поверхностно-активное вещество (ПАВ) - цетилпиридиний бромистый, в соотношениях Tb:K:ПАВ=1:2:13 и слабыми растворами аммиака и соляной кислоты создают рН=7,5±0,1. Достигается повышение точности, чувствительности и селективности анализа.

Патент РФ № 2194013 «Люминесцентный способ определения тербия». Изобретение относится к аналитической химии, в частности к способам люминесцентного определения тербия. Тербий переводят в люминесцирующее комплексное соединение с органическим реагентом (R) - метиловым эфиром S-(4-броманилидом) сульфосалициловой кислоты в присутствии катионного поверхностно-активного вещества (ПАВ) хлорида децилпиридиния. Соотношение Тb:R:ПАВ=1:2:13, рН 7,9±0,08. Способ отличается высокой селективностью и воспроизводимостью. Он позволяет одновременно определять Tb, Dy, Sm, Eu в оксидах лантаноидов.

Патент РФ № 2506569 «Люминесцентный способ определения тербия». Изобретение относится к области аналитической химии, а именно к способу люминесцентного определения тербия. Способ включает перевод тербия в люминесцирующее соединение с органическим реагентом. В качестве реагента используют 1,2-диоксибензол-3,5-дисульфокислоту (ДБСК) и в раствор люминесцирующего комплексного соединения тербия с ДБСК добавляют этилендиаминтетрауксусную кислоту (ЭДТА) в соотношении Тb:ДБСК:ЭДТА=1:1:1 при рН=12,0-13,0.

Недостатками предложенных способов являются - недостаточная чувствительность, селективность и устойчивость во времени стояния и облучения, а также высокая трудоемкость получения комплексного соединения и продолжительность анализа.

Задача, решаемая изобретением, заключается в снижении предела обнаружения, повышение устойчивости, чувствительности, селективности и снижение продолжительности анализа.

Результат достигается тем, что тербий переводят в люминесцирующее комплексное соединение с органическим реагентом (R) - ципролетом (ЦП), соотношение Тb:R=1:2, при рН=5,9±0,1.

Пример 1.

Для получения растворов хлоридов лантанидов, их оксиды предварительно прокаливали в течение одного часа в муфельной печи при температуре 650-700°С и охлаждают в эксикаторе. Навеску оксидов лантанидов по расчетам их 10-3 М концентраций обрабатывают соляной кислотой и Н2О2, а затем раствор выпаривают. Сухой остаток редкоземельных элементов (РЗЭ) растворяют в дистиллированной воде. Растворы с меньшей концентрацией реагента готовили соответствующим разбавлением. Концентрацию стандартного раствора хлорида тербия контролировали комплексонометрическим методом. Титрование производили в присутствии уротропина, в качестве индикатора использовали арсеназо I. Раствор нолицина с концентрацией 10-3 М готовят соответствующим разбавлением концентрированного этанольного раствора. Кислотность среды создают добавлением водного раствора аммиака до рН рН=5,9±0,1. Для определения содержания тербия в оксидах РЗЭ применяли метод добавок.

При добавлении к раствору тербия раствора нолицина, установлении рН=5,9±0,1 и облучении УФ-светом наблюдается свечение зеленого цвета, характерное для ионов тербия.

Пример 2.

Для получения растворов хлоридов лантанидов, их оксиды предварительно прокаливали в течение одного часа в муфельной печи при температуре 650-700°С и охлаждают в эксикаторе. Навеску оксидов лантанидов по расчетам их 10-5 М концентраций обрабатывают соляной кислотой и Н2О2, а затем раствор выпаривают. Сухой остаток рездкоземельных элементов (РЗЭ) растворяют в дистиллированной воде. Растворы с меньшей концентрацией реагента готовили соответствующим разбавлением. Концентрацию стандартного раствора хлорида тербия контролировали комплексонометрическим методом. Титрование производили в присутствии уротропина, в качестве индикатора использовали арсеназо I.

Растворы ципролета (ЦП) готовили из точной навески 0,0964 г, растворяли в этиловом спирте, отфильтровали раствор и переносили в мерную колбу на 50 мл.

С17Н21FClN3O4 (ЦП)

МВ=385,5 г/моль

Исследования проводили на приборе Perkinelmer LS 55, интенсивность люминесценции комплексов регистрировали при λ=545 нм. По величине пиков люминесценции растворов пробы и пробы с добавками рассчитывали содержание тербия в анализируемом образце.

Нами обнаружено, что тербий ярко люминесцирует в комплексе с ципролетом (ЦП) при облучении УФ-светом ртутной лампы. Проведено исследование раствора Tb в комплексе с ЦП в интервале длин волн 500-600 нм. Установлено, что Tb в комплексе с ЦП интенсивно люминесцирует в интервале длин волн 520-560 нм с максимумом при λ=545 нм. В этой области в условиях эксперимента отсутствует люминесцентное свечение растворов европия и ципролета. (рис. 1).

Спектрофотометрическое исследование растворов Tb в комплексе с ЦП показало, что растворы реагента и комплекса Tb с ЦП световую энергию поглощают в интервале длин волн 220-280 нм. В этом интервале поглощательная способность раствора тербия минимальна.

В ходе исследования влияния концентрации реагента на Iлюм раствора комплекса Tb с ЦП (рис. 2) установлено, что достаточным для растворов комплекса, содержащих 0,5 мл 1∙10-3 М Tb, является добавление 1 мл 1∙10-3 М раствора реагента. Растворы комплекса Tb с ЦП начинают максимально светиться сразу после сливания всех реагентов и создания рН = 5,9 и остаются устойчивыми более суток (табл. 1).

Как видно из рис. 2, соотношение компонентов в комплексе Tb с ЦП равно Tb:ЦП = 1:2.

Подобраны оптимальные условия комплексообразования Tb с ЦП путем исследования влияния различных факторов. На рис. 3 представлены результаты изучения зависимости Iлюм раствора комплекса Tb с ЦП от рН среды растворов.

Исследовано влияние других ионов РЗЭ на интенсивность свечения раствора комплекса Tb с ЦП. Согласно полученным данным, введение других РЗЭ, а также d-элементов в растворы комплекса Tb с ЦП приводит к снижению Iлюм в разной степени (табл. 2, 3).

Нижний предел обнаружения Tb в комплексе с ЦП составляет 2,8⋅10-8 г/мл Tb. После сорбционного концентрирования ионов Tb в комплексе с ЦП на сорбенте АВ-17 нижний предел обнаружения снизился на два порядка и составил 9,35⋅10-10 г/мл Tb.

Технический результат, достигаемый изобретением: снижение предела обнаружения, повышение устойчивости, чувствительности и селективности люминесцентного способа определения тербия.

Люминесцентный способ определения тербия, включающий перевод его в люминесцирующее комплексное соединение с органическим реагентом (R), отличающийся тем, что в качестве органического реагента используют ципролет в соотношениях Тb:R=1:2 при рН=5,9±0,1.



 

Похожие патенты:

Изобретение относится к области анализа материалов с использованием оптических средств, а именно к способам и устройствам микробиологических анализов, и может быть использовано в качестве основного инструмента для оценки динамики популяций микроорганизмов в исследуемой среде. 2 н.п.
Изобретение относится к способу оптимизации удаления кальция из углеводородного сырья в способе обессоливания для нефтепереработки. Причем способ обессоливания для нефтепереработки включает следующие стадии: (a) смешивание одного или нескольких потоков промывочной воды с одним или несколькими потоками углеводородного сырья; (b) по меньшей мере частичное отделение промывочной воды от углеводородов в обессоливателе для нефтепереработки и (c) удаление отделенной воды и углеводородов из обессоливателя для нефтепереработки в форме одного или нескольких потоков обессоленных углеводородов и одного или нескольких потоков сточной воды; где способ оптимизации включает: (i) обеспечение по меньшей мере одного рентгеновского флуоресцентного анализатора по меньшей мере в одной технологической точке обессоливания для нефтепереработки; (ii) измерение концентрации кальция по меньшей мере в одной технологической точке с применением по меньшей мере одного рентгеновского флуоресцентного анализатора и (iii) необязательное регулирование по меньшей мере одного технологического условия способа обессоливания для нефтепереработки в ответ на измерение концентрации кальция на стадии (ii), в котором оптимизация способа дополнительно включает измерение по меньшей мере одного дополнительного технологического параметра, выбранного из pH одного или нескольких потоков промывочной воды, pH одного или нескольких потоков сточной воды, pH смеси воды и углеводородов, концентрацию железа по меньшей мере в одной технологической точке, концентрацию амина по меньшей мере в одной технологической точке или любую их комбинацию.

Использование: для измерения малых концентраций молекул в жидких и газовых средах. Сущность изобретения заключается в том, что оптический сенсор на основе плазмон-индуцированной прозрачности и Фано-резонансов состоит из оптической призмы, слоя благородного металла, в котором возбуждается поверхностный плазмон, следующего за ним разделительного диэлектрического слоя с меньшим показателем преломления, чем показатель преломления призмы, расположенным за разделительным слоем волноводным слоем с большим показателем преломления, чем разделительный слой, при этом слой благородного металла и соответственно вышеуказанные следующие за ним слои наносятся на отдельную прозрачную пластину, соединенную с призмой через иммерсионную жидкость с таким же показателем преломления, что у призмы и пластины, причем слои наносятся на сторону пластины, противоположную призме.

Бриллюэновский рефлектометр для измерения распределения температуры или механических напряжений по длине оптического волокна содержит импульсный лазер, связанный с чувствительным элементом в виде первого отрезка оптического волокна, первое и второе средства для организации приема обратнорассеянного излучения и фотоприемник, связанный с блоком обработки информации.

Бриллюэновский рефлектометр для измерения распределения температуры или механических напряжений по длине оптического волокна содержит импульсный лазер, связанный с чувствительным элементом в виде первого отрезка оптического волокна, первое и второе средства для организации приема обратнорассеянного излучения и фотоприемник, связанный с блоком обработки информации.
Использование: для люминесцентного определения тербия. Сущность изобретения заключается в том, что тербий переводят в люминесцирующее комплексное соединение с органическим реагентом (R) - метилэтиловый эфир сульфосалициловой кислоты.

Изобретение относится к области спектроскопии и касается способа спектроскопии накачки-зондирования. Способ заключается в том, что формируют последовательность исходных лазерных импульсов, выделяют из сформированной последовательности прореженные лазерные импульсы.

Изобретение относится к области спектроскопии и касается способа спектроскопии накачки-зондирования. Способ заключается в том, что формируют последовательность исходных лазерных импульсов, выделяют из сформированной последовательности прореженные лазерные импульсы.

Изобретение относится к технике связи, а именно к технике передачи информации по волоконно-оптической линии передачи. Технический результат состоит в повышении устойчивости к воздействию внешних факторов волоконно-оптической линии передачи информации, под действием которых изменяется коэффициент затухания ее световода, изменяется форма передаваемого по ней аналогового сигнала или даже передача оптического сигнала через световод становится невозможной, а также расширение области ее применения.

Изобретение относится к способу определения химических соединений, принадлежащих к группе тиурамдисульфидов, включающему пробоподготовку анализируемого раствора путем экстракции определяемых соединений, ионизацию молекул определяемых соединений и детектирование ионов в масс-спектрометре. Способ характеризуется тем, что химические соединения, принадлежащие к группе тиурамдисульфидов, предварительно переводят в комплексные соединения путем взаимодействия с переходными металлами, полученные комплексные соединения экстрагируют из анализируемого раствора, экстрагент наносят на твердотельную подложку, хорошо поглощающую лазерное излучение и обеспечивающую ионизацию находящихся на поверхности соединений путем переноса электрона, воздействуют на подложку импульсным лазерным излучением и детектируют полученные в результате такого воздействия ионы.

Изобретение относится к медицине, а именно к стоматологии и микробиологии, и может быть использовано для прогнозирования риска развития обострения хронического гингивита у пациентов, перенесших новую коронавирусную инфекцию. Оценивают наличие видов микроорганизмов, выделенных из десневого желобка: Streptococcus oralis, Neisseria elongata, Streptococcus intermedius, Staphylococcus epidermidis, Corynebacterium durum, Neisseria subflava, Neisseria flavescens, Streptococcus sanguinis, Streptococcus mitis, Streptococcus gordonii, Veillonella parvula – 1 группа и Haemophilus parainfluenzae – 2 группа.
Наверх