Способ азотирования детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, зубчатых колес и роторов винтовых насосов и двигателей. Способ включает размещение детали в рабочей камере, активацию поверхности детали перед азотированием, подачу в камеру рабочей насыщающей среды, нагрев детали до температуры азотирования и выдержку при этой температуре до формирования необходимой толщины азотированного слояю. При этом активацию поверхности детали перед азотированием проводят в два этапа, на первом этапе осуществляют формирование поверхностного слоя детали с ультрамелкозернистой структурой, а затем на втором этапе активации проводят высокоэнергетическую ионно-имплантационную обработку поверхности детали ионами азота при энергии ионов, обеспечивающей формирование в поверхностном слое детали на глубину азотирования радиационных дефектов кристаллической структуры, обеспечивающих равновеликий процесс диффузии азота как внутри зерен металла, так и по их границам. Технический результат заключается в повышении производительности и качества процесса азотирования, а также в повышении износостойкости азотированного слоя деталей из легированных сталей. 4 з.п. ф-лы, 3 табл.

 

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, зубчатых колес и роторов винтовых насосов и двигателей.

Одними из ответственных деталей нефтяного и нефтедобывающего машиностроения являются роторы винтовых насосов и двигателей. Указанные роторы обычно изготавливается из легированных сталей в виде стержня, на котором нарезаны наружные винтовые зубья. При работе роторы винтовых насосов и двигателей подвергается интенсивному изнашиванию. Например, ротор забойного двигателя подвергается воздействию жидкой среды, содержащей механические примеси. Твердые частицы бурового раствора изнашивают поверхность ротора, что приводит к разрушению уплотнения между ротором и статором и ухудшают работу двигателя, резко снижая сроки его эксплуатации.

Для повышения стойкости поверхностного слоя материала указанных деталей используют химико-термическую обработку (ХТО), в частности азотирование

Широко известны процессы упрочнения поверхности деталей методами ХТО. Известен, например способ химико-термической обработки стальных изделий, включающий диффузионное насыщение элементами внедрения и замещения и последующий нагрев поверхности изделия (А.С. СССР №1515772, МПК С23С 8/00. Способ химико-термической обработки стальных изделий. Бюл. №36, 2013 г.).

Известен способ ХТО деталей, заключающий в высокотемпературном азотировании, закалке с последующим отпуском [Лахтин Ю.М., Коган Я.Д. Азотирование стали. М.: Машиностроение, 1976, с. 99-102]. В результате обработки получают высокоазотистый слой небольшой толщины. Такой слой хорошо противостоит коррозии в атмосфере, но плохо работает при высоких изгибных, контактных напряжениях и в условиях повышенного износа.

Известны также методы ионного азотирования в плазме тлеющего разряда постоянного или пульсирующего тока, которые включают в себя две стадии - очистку поверхности катодным распылением и собственно насыщение поверхности металла азотом [Теория и технология азотирования / Лохтин Ю.М., Коган Л.Д. и др. // М., Металлургия, 1990, с. 89].

Известен также способ азотирования металлов и сплавов, при котором на стадии очистки изделий тлеющий разряд периодически переводят в импульсную электрическую дугу. Это позволяет интенсифицировать процесс за счет быстрого разогрева обрабатываемой поверхности в первые минуты до более высоких температур, чем температура процесса азотирования (А.С. СССР 1534092, МПК С23С 8/36, опубл. 07.01.90; BG 43787. МПК С23С 8/36. Method for chemico-thermic treatment in glowing discharge of gear transmissions. 1988).

Известен также способ азотирования металлов и сплавов, при котором производится подготовка поверхностного слоя материала перед азотированием методами поверхностной пластической деформации высокоинтенсивной обработкой микрошариками до получения ультрамелкозернистой структуры (Мингажев А.Д., Яшина А.С.Азотирование деталей из легированных сталей с использованием эффекта поверхностного пластического деформирования. Фундаментальные и прикладные научные исследования: актуальные вопросы, достижения и инновации. Сб.статей XIII Междунар. Науч.-практ.Конф.: в 2 ч. Изд-во: Наука и Просвещение С. 118-121. 2018 г.)

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ азотирования детали из легированной стали, включающий размещение детали в рабочей камере установки, активацию поверхности детали перед азотированием, подачу в камеру рабочей насыщающей среды, нагрев детали до температур азотирования и выдержку при этих температурах до формирования необходимой толщины азотированного слоя (А.С. СССР №1574679, МПК С23С 8/36, опубл. 30.06.90; патент РФ №2144095, МПК С23С 8/38, опубл. 10.01.2000).

Недостатками известных способов и прототипа являются невысокая износостойкость поверхности из-за неоднородности диффузионного слоя и образования в диффузионном слое хрупких фаз, а также формирования нитридной сетки, приводящей к выкрашиванию азотированных зерен в процессе эксплуатации деталей.

Азотирование с использованием известных способов приводит к следующим негативным явлениям: существует высокая вероятность образования неравномерного слоя с уменьшенной концентрацией насыщаемого вещества, неоднородной и пониженной твердостью материала поверхностного слоя, возникновением дефектных участков, особенно при образовании развитой нитридной сетки. Для удаления дефектных участков поверхностного слоя после азотирования проводится шлифование, однако, в основном из-за образования нитридной сетки происходит удаление наиболее насыщенного азотом слоя, который сохранялся бы при возможности подавления процессов образования нитридной сетки.

Причиной образования нитридной сетки в азотированном слое является различие в интенсивности диффузии азота в зернах металла и по его границам (поскольку интенсивность диффузии по границам зерен намного выше в объемах зерен, то это приводит к перенасыщению границ зерен азотом). Как известно [Иваненко А. О., Тулькова И. А., Уваров М. М. Технологические особенности азотирования резьбовых поверхностей ответственных деталей электромеханического привода. Изв. вузов. приборостроение. 2018. т. 61, №4. с. 360 - 367.], наличие нитридной сетки в значительной степени снижает износостойкость азотированного слоя.

В то же время также известно [Гегузин Я.Е. Диффузионная зона. - М.: Наука, 1979. - 343 с.], что наличие плотных объемов дефектов кристаллической структуры приводит к интенсификации диффузионных процессов. При этом, возможно создание высокой плотности дефектов кристаллической структуры методами интенсивной пластической деформации (ИПД) [Тиняев В.Г., Назаренко В.Д., Лахник А.М. Особенности формирования диффузионных слоев на сплавах железа после предварительной пластической деформации // Металлофизика и новейшие технологии. - 1996. Т. 18. №2. С. 45-51.] и методами высокоэнергетической ионной имплантации [Риссел Х. Ионная имплантация. М.: Наука, 1983. 358 с.]. В то же время, если использовать только методы ИПД, то образованный в этом случае поверхностный слой (ПС) материала будет иметь мелкокристаллическую структуру, которая, однако, при нагреве в процессе азотирования будет происходить процесс рекристаллизации с укрупнением зерен.

Известно также, что в процессе высокоэнергетической ионной имплантации (порядка 20 кЭВ и более), в ПС происходит формирование высокой плоти дефектов кристаллической структуры на глубине порядка от 200 до 300 мкм [Риссел Х. Ионная имплантация. М.: Наука, 1983. 358 с.]. Кроме того, на границах зерен возникают зоны, блокирующие диффузионные процессы, приводящие, например к резкому повышению коррозионной стойкости ПС [Повышение сопротивления высокотемпературной газовой коррозии лопаток компрессора путем комбинированного модифицирования их поверхности. Смыслов А.М. и др.

Сб.докладов VI Всероссийской конференции по испытаниям исследованиям свойств материалов "ТестМат". ФГУП ВИАМ. 2015. С. 24.]

Задачей предлагаемого изобретения является интенсификация процесса и повышение качества азотирования деталей из легированных сталей за счет активации поверхностного слоя и формирования в нем высокой плотности дефектов кристаллической структуры, обеспечивающих равновеликие диффузионные процессы внутри зерен металла и по их границам, и тем самым подавляющих образование нитридной сетки.

Техническим результатом заявляемого изобретения является повышение производительности и качества процесса азотирования, а также повышение износостойкости азотированного слоя деталей из легированных сталей.

Технический результат достигается тем, что в способе азотирования детали из легированной стали, включающий размещение детали в рабочей камере, активацию поверхности детали перед азотированием, подачу в камеру рабочей насыщающей среды, нагрев детали до температуры азотирования и выдержку при этой температуре до формирования необходимой толщины азотированного слоя, в отличие от прототипа, активацию поверхности детали перед азотированием проводят в два этапа, на первом этапе осуществляют формирование поверхностного слоя детали с ультрамелкозернистой структурой, а затем на втором этапе активации проводят высокоэнергетическую ионно-имплантационную обработку поверхности детали ионами азота при энергии ионов, обеспечивающей формирование в поверхностном слое детали на глубину азотирования радиационных дефектов кристаллической структуры, обеспечивающих равновеликий процесс диффузии азота как внутри зерен металла, так и по их границам.

Кроме того, возможно использование в способе следующих дополнительных приемов: высокоэнергетическую ионно-имплантационную обработку поверхности детали проводят при энергии ионов от 26 до 34 кэВ, дозе облучения от 1,2⋅1017 см-2 до 1,3⋅1017 см-2, скорости набора дозы облучения от 0,7⋅1015 с-1 до 1,2⋅1015 с-1, при теплоотводе от обрабатываемой поверхности, обеспечивающем температуру детали от 40 до 120°С; формирование упомянутой ультрамелкозернистой структуры проводят методом интенсивной пластической деформации; формирование упомянутой ультрамелкозернистой структуры проводят методом интенсивной бомбардировкой ионами до получения равномерного аморфного поверхностного слоя, нагревают его до температуры начала процесса кристаллизации, производят выдержку при упомянутой температуре до достижения необходимых размеров кристаллов ультрамелкозернистой структуры, после чего прекращают нагрев и производят охлаждение материала; в качестве метода азотирования используют ионное азотирование.

Повышение требований к качеству обработки деталей машин послужило поводом для совершенствования методов насыщения поверхности легирующими элементами и привело к созданию ряда новых способов обработки, таких как ионное азотирование [Теория и технология азотирования / Лохтин Ю.М., Коган Л.Д. и др. // М., Металлургия, 1990, с. 89] и ионная имплантация [например, патент РФ №2496910. МПК С23С 14/02. Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе. Бюл №30, 2013]. Ионная имплантация позволяет производить насыщение поверхностного слоя деталей практически любыми легирующим и элементами, а детали, упрочненные методом ионной имплантации, имеют гораздо более высокие эксплуатационные свойства, чем детали, подвергнутые обычной или ионной химико-термической обработке [Модифицирование и легирование поверхности лазерными, ионными и электронными пучками / Под ред. Д.М. Поута, Г. Фоти, Д.К. Джекобсона. М.: Мир, 1987, 424 с.; Модифицирование и легирование поверхности лазерными, ионными и электронными пучками. / под ред. Дж. М. Поута. М.: Машиностроение, 1987. - 424 с.]. При этом основными недостатками ионно-имплантационной обработки являются дороговизна метода и незначительная глубина проникновения легированных элементов в поверхностный слой материала.

Для оценки эксплуатационных свойств деталей, обработанных по предлагаемому способу, были проведены следующие испытания. Образцы из высоколегированных сталей 20Х13, 40Х, 40ХН были подвергнуты обработке как по способам-прототипам (патент РФ №2144095), согласно приведенным в способе-прототипе условиям и режимам обработки, так и по вариантам предлагаемого способа.

Режимы обработки образцов по предлагаемому способу/

Формирование поверхностного слоя детали с ультромелкозернистой структурой:

- Методом бомбардировки ионами, согласно способу (Патент РФ №2385968) - энергии ионов азота 30 КэВ, при плотности ионного тока 10 мА/см2 - удовлетворительный результат (У.Р.).

- методом интенсивной пластической деформации, согласно способу (Патент РФ №2662518) - удовлетворительный результат (У.Р.).

Активация ионной импланатцией после формирования поверхностного слоя детали с ультрамелкозернистой структурой при обработке деталей из легированных сталей перед азотированием проводилась по следующим режимам: имплантируемые ионы азота; доза - 1,0⋅1017 см-2 - неудовлетворительный результат (Н.Р.); 1,2⋅1017 см-2 - удовлетворительный результат (У.Р.); 1,3⋅1017 см-2 (У.Р.); 1,5⋅1017 см-2 (Н.Р.); скорость набора дозы облучения - 0,5⋅1015 с-1 (Н.Р.); 0,7⋅1015 с-1 (У.Р.); 1⋅1015 с-1 (У.Р.); 1,3⋅1015 с-1 (У.Р.); 1,5⋅1015 с-1 (Н.Р.), энергия: 22 кэВ (Н.Р.); 26 кэВ (У.Р.); 32 кэВ (У.Р.); 34 кэВ (У.Р.); 38 кэВ (Н.Р.).

Проводилось газовое и ионное азотирование деталей методами (отличие предлагаемого способа от существующих состояло в предварительной активации поверхности получением ультрамелкозернистой структуры и последующей ионной имплантацией ионами азота).

Испытания показали на повышение износостойкости образцов по сравнению с прототипом от 2,4 до 3,9 раз (для вариантов: УМЗд+ВЭИИА+ГА от 2,4 до 2,5 раз, для УМЗд+ВЭИИА+ИА от 2,9 до 3,3 раза, для УМЗб+ВЭИИА+ГА от 2,9 до 3,0 раз, для УМЗб+ВЭИИА+ИА от 3,4 до 3,9 раз). (Таблицы 1-3).

(Обозначения в таблицах 1-3: ИС - исходное состояние, ВЭИИА - высокоэнергетическая ионная имплантация, ГА - газовое азотирование, ИА - ионное азотирование, ППД - поверхностное пластическое деформирование, УМЗд - ультрамелкозернистая структура, полученная интенсивной деформацией, УМЗб - ультрамелкозернистая структура, полученная бомбардировкой ионами).

Таблица 1.
Износостойкость образцов из легированных сталей 20Х13 после ХТО
Материал
детали
Вид обработки Потеря массы, Δm⋅10-4 г Коэффициент трения (без смазки)
0 20Х13 ИС 368 0,19- 0,18
1 ВЭИИА 154 0,16- 0,15
2 ГА 78 0,17- 0,16
3 ИА 64 0,16- 0,15
4 ППД+ГА 49 0,16- 0,15
5 ППД+ИА 46 0,16- 0,15
6 УМЗд+ВЭИИА+ГА 20 0,16- 0,15
7 УМЗд+ВЭИИА+ИА 14 0,16- 0,15
8 УМЗб+ВЭИИА+ГА 17 0,16- 0,15
9 УМЗб+ВЭИИА+ИА 12 0,15- 0,14

Таблица 2.
Износостойкость образцов из легированных сталей 40Х после ХТО
Материал Вид обработки Потеря массы, Δm⋅10-4 г Коэффициент трения (без смазки)
0 40Х ИС 324 0,20- 0,19
1 ВЭИИА 108 0,17- 0,16
2 ГА 65 0,18- 0,17
3 ИА 53 0,17- 0,16
4 ППД+ГА 43 0,17- 0,16
5 ППД+ИА 39 0,16- 0,15
6 УМЗд+ВЭИИА+ГА 19 0,16- 0,15
7 УМЗд+ВЭИИА+ИА 12 0,16- 0,15
8 УМЗб+ВЭИИА+ГА 14 0,16- 0,15
9 УМЗб+ВЭИИА+ИА 10 0,15- 0,14

Таблица 3
Износостойкость образцов из легированных сталей 40ХН после ХТО
Материал Вид обработки Потеря массы, Δm⋅10-4 г Коэффициент трения (без смазки)
0 40ХН ИС 334 0,20- 0,19
1 ВЭИИА 117 0,16- 0,15
2 ГА 69 0,17- 0,16
3 ИА 58 0,16- 0,15
4 ППД+ГА 44 0,16- 0,15
5 ППД+ИА 41 0,16- 0,15
6 УМЗд+ВЭИИА+ГА 18 0,16- 0,15
7 УМЗд+ВЭИИА+ИА 14 0,16- 0,15
8 УМЗб+ВЭИИА+ГА 15 0,16- 0,15
9 УМЗб+ВЭИИА+ИА 12 0,15- 0,14

Скорость азотирования за счет увеличения скорости диффузии возросла приблизительно в 1,4…1,8 раза. Исследование образцов показало на повышение однородности структуры диффузионной зоны материалов и отсутствие нитридной сетки при азотировании по предложенному способу.

Таким образом, проведенные сравнительные испытания показали, что предлагаемый способ азотирования детали из легированной стали, позволяет обеспечить заявленный технический результат изобретения - повышение производительности и качества процесса азотирования, а также повышение износостойкости азотированного слоя деталей из легированных сталей.

1. Способ азотирования детали из легированной стали, включающий размещение детали в рабочей камере, активацию поверхности детали перед азотированием, подачу в камеру рабочей насыщающей среды, нагрев детали до температуры азотирования и выдержку при этой температуре до формирования необходимой толщины азотированного слоя, отличающийся тем, что активацию поверхности детали перед азотированием проводят в два этапа, на первом этапе осуществляют формирование поверхностного слоя детали с ультрамелкозернистой структурой, а затем на втором этапе активации проводят высокоэнергетическую ионно-имплантационную обработку поверхности детали ионами азота при энергии ионов, обеспечивающей формирование в поверхностном слое детали на глубину азотирования радиационных дефектов кристаллической структуры, обеспечивающих равновеликий процесс диффузии азота как внутри зерен металла, так и по их границам.

2. Способ по п.1, отличающийся тем, что высокоэнергетическую ионно-имплантационную обработку поверхности детали проводят при энергии ионов от 26 до 34 кэВ, дозе облучения от 1,2·1017 см-2 до 1,3·1017 см-2, скорости набора дозы облучения от 0,7·1015 с-1 до 1,2·1015 с-1, при теплоотводе от обрабатываемой поверхности, обеспечивающем температуру детали от 40 до 120 °С.

3. Способ по п.1, отличающийся тем, что формирование упомянутой ультрамелкозернистой структуры проводят методом интенсивной пластической деформации.

4. Способ по п.1, отличающийся тем, что формирование упомянутой ультрамелкозернистой структуры проводят методом интенсивной бомбардировкой ионами до получения равномерного аморфного поверхностного слоя, нагревают его до температуры начала процесса кристаллизации, производят выдержку при упомянутой температуре до достижения необходимых размеров кристаллов ультрамелкозернистой структуры, после чего прекращают нагрев и производят охлаждение материала.

5. Способ по любому из пп.1-4, отличающийся тем, что в качестве метода азотирования используют ионное азотирование.



 

Похожие патенты:
Изобретение может быть использовано в инструментальном производстве при упрочнении режущего инструмента путём осаждения самозатачиваемых покрытий. Обрабатываемый металлорежущий инструмент помещают в вакуумную камеру и производят его ионную очистку в среде инертного газа сначала с использованием плазменного источника с накальным катодом, а затем с использованием электродугового испарителя.

Изобретение относится к способам упрочнения поверхности детали. Способ включает создание чередующихся упрочненных и неупрочненных прямолинейных участков, причем упрочненные прямолинейные участки образуют путем формирования азотированного слоя при нагреве лазерным лучом в атмосфере азота, при этом упомянутые участки располагают перпендикулярно вектору силы трения, создаваемой на рабочей поверхности детали, после чего осуществляют обкатку детали с образованием в неупрочненных участках рельефа в виде канавок.
Изобретение относится к способу получения резьбовых сегментов сборной быстросъемной гайки резьбового соединения устройства для балансировки автомобильных колес. Способ включает проведение объемной закалки и отпуска кольцевой заготовки резьбовых сегментов и ионно-плазменное азотирование поверхности резьбовых сегментов, при этом упомянутую заготовку резьбовых сегментов закаливают с получением объемной твердости в диапазоне 25-30 HRC, далее проводят чистовую окончательную высокоточную механическую обработку подвергнутой закалке и отпуску заготовки с получением резьбовых сегментов и осуществляют ионно-плазменное азотирование резьбовых сегментов до получения защитного азотированного покрытия толщиной, равной половине толщины защитного азотированного покрытия стального резьбового вала указанного резьбового соединения, и твердостью в диапазоне 55-65 HRC, а упомянутая толщина защитного азотированного покрытия стального резьбового вала составляет 0,3-0,4 мм.

Изобретение относится к области оборудования для модификации поверхности деталей в низкотемпературной газоразрядной плазме и может быть использовано в ионно-плазменных процессах очистки, активации и легирования поверхности деталей. Установка для ионного азотирования в плазме тлеющего разряда содержит вакуумную камеру и подключенные к ней форвакуумный насос и блок управления расходом газа, к которому подключены баллоны с газами, электроды для возбуждения тлеющего разряда, установленные в рабочем пространстве камеры, анод и подложка-катод, соединенные с источником питания разряда.

Изобретение относится к способу азотирования детали из легированной стали. Способ включает размещение детали в рабочей камере, активацию поверхности детали перед азотированием, подачу в камеру рабочей насыщающей среды, нагрев детали до температуры азотирования и выдержку детали при этой температуре до формирования необходимой толщины азотированного слоя, при этом активацию поверхности детали перед азотированием проводят в два этапа, на первом этапе осуществляют поверхностное пластическое деформирование детали, обеспечивая от 1,1 до 1,2 раз превышение толщины измененного в результате поверхностного пластического деформирования слоя над толщиной формируемого азотированного слоя, а затем на втором этапе активации проводят высокоэнергетическую ионно-имплантационную обработку поверхности детали ионами азота, обеспечивающую формирование в поверхностном слое детали на глубину азотирования радиационных дефектов кристаллической структуры, обеспечивающих равновеликий процесс диффузии азота внутри зерен металла и по их границам, причем высокоэнергетическую ионно-имплантационную обработку поверхности детали проводят при энергии ионов от 20 до 24 кэВ, дозе облучения от 1,2⋅1017 см-2 до 1,3⋅1017 см-2, скорости набора дозы облучения от 0,7⋅1015 с-1 до 1,2⋅1015 с-1, а поверхностную пластическую деформацию проводят ультразвуковым инструментом при частоте f=17-20 кГц и амплитуде ξm=4-16 мкм акустических колебаний и усилием его прижима к детали 40-160 H, а в качестве метода азотирования используют ионное азотирование.

Изобретение относится к области технологии машиностроения и может быть использовано для технологических процессов поверхностного упрочнения металлических поверхностей. Устройство содержит блок формирования коронного разряда и сопло с металлическим наконечником, имеющим отверстие для выхода озонированного воздуха, с муфтой, в которой установлен штуцер для подвода сжатого воздуха в сопло, и муфтой для подвода высоковольтного провода внутрь сопла, при этом блок формирования коронного разряда подключен к упомянутому наконечнику и посредством упомянутого высоковольтного провода подключен к электроду, установленному в сопле с возможностью образования коронного разряда между ним и упомянутым наконечником.

Изобретение относится к упрочнению ультрадисперсного твердого сплава. Ультрадисперсный твердый сплав сначала спекают при температуре 1400-1650 °С и охлаждают, затем проводят азотирование в вакуумной печи в среде азота при температуре 900-1200 °С и давлении 5 Па.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, в медицине и деталей в других отраслях промышленности, работающих в условиях изнашивания. Способ низкотемпературного ионного азотирования изделий из титановых сплавов включает подачу в вакуумную камеру с упомянутыми изделиями плазмообразующей газовой смеси, содержащей азот и аргон.

Изобретение относится к области термо-химической обработки материалов. Способ плазменного азотирования оксида кремния в твердой фазе в контролируемой среде включает воздействие на упомянутый оксид кремния низкотемпературной азотной плазмой при атмосферном давлении в течение 7-10 секунд.

Изобретение относится к области химико-термической обработки, а именно к вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструментов, изготовленных из стали. Способ ионного азотирования стального изделия в тлеющем разряде включает подачу в камеру для азотирования рабочей газовой смеси, нагрев стального изделия до температуры азотирования 500-540°С с выдержкой в течение 4-6 часов и одновременное генерирование в камере для азотирования скрещенных электрического и магнитного полей.

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, зубчатых колес и роторов винтовых насосов и двигателей.
Наверх