Способ переработки легкой фракции твердых бытовых и промышленных отходов с отделением полиолефинов

Изобретение относится к области переработки отходов. Описан способ переработки легкой фракции твердых бытовых и промышленных отходов с отделением полиолефинов, включающий получение агломерата указанной фракции, загрузку агломерата в экстрактор, нагревание экстрактора до температуры 40-70°С в токе инертного газа и утилизацию агломерата в три стадии, причем на первой стадии проводят экстракцию содержащихся в указанной фракции биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата жидким ароматическим растворителем и парогазовой смесью, содержащей инертный газ и водяной пар, при температуре в экстракторе 40-70°С и избыточном давлении 0,1-0,5 МПа с последующим повышением температуры в экстракторе до 130-140°С путем обработки агломерата парогазовой смесью, содержащей ароматический растворитель, инертный газ и водяной пар, при избыточном давлении 0,1- 0,5 МПа, на второй стадии проводят экстракцию полиолефинов путем обработки агломерата ароматическим растворителем в токе инертного газа при температуре в экстракторе 130-140°С при избыточном давлении 0,1-0,5 МПа с последующим охлаждением смеси полиолефинов и ароматического растворителя до 20-30°С, отделением полиолефинов от ароматического растворителя сепарацией и сушкой полиолефинов в токе инертного газа, а на третьей стадии проводят отгонку ароматического растворителя от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 130-140°С и избыточном давлении 0,1–0,5 МПа, сушку агломерата в токе инертного газа с последующей его выгрузкой из экстрактора и сжиганием, при этом отношение массы инертного газа, ароматического растворителя и водяного пара к массе агломерата составляет 0,02-0,1, 5-15, 0,3-0,7, соответственно. Технический результат - отсутствие загрязнения полиолефинов другими полимерами после их экстракции, а также возможность легкого удаления растворителя из них. 2 з.п. ф-лы, 4 табл., 12 пр.

 

Изобретение относится к области переработки отходов с использованием селективных растворителей для полимерных компонентов, в частности, легких фракций твердых промышленных бытовых отходов с отделением полиолефинов для последующего использования их в качестве вторичного сырья для производства изделий из полимеров.

Полимеры широко используются в повседневной жизни в самых разных областях, например, как упаковочные материалы, детали автомобилей, медицинских устройств и др. потребительские товары. В настоящее время полимеры производятся из ископаемого сырья, нефти и природного газа, что наносит существенный вред экологии.

Повсеместное использование полимеров стало результатом накопления миллионов тонн отходов полимеров и отходов, содержащих полимеры, притом значительная часть отходов полимеров попадает в окружающую среду в виде мусора, который потенциально опасен для экосистем.

Синтетические полимеры являются весьма устойчивыми химическими соединениями и могут сохраняться в окружающей среде в течение многих десятков лет без заметного химического разрушения (Зезин А.Б. Полимеры и окружающая среда. // Соросовский образовательный журнал. 1996. №2. С.57-64).

Одним из экономически и экологически оправданным решением, позволяющим решить проблемы, связанные с использованием полимеров, является их восстановление и повторное использование, перенаправляя их со свалок, снижая потребность в исходных пластмассах, производимых промышленностью.

Для переработки или утилизации отходов полимеров применяется ряд способов, которые можно разделить на недеструктивные и деструктивные превращения:

- к недеструктивной переработке полимеров и их отходов относят переработку путем гранулирования с целью повторного использования;

- к деструктивной переработке полимеров и их отходов относят переработку путем деления на полимеры с меньшей молекулярной массой (полимерные воска или мономеры и различные углеводородные фракции (С.А. Вольфсон. Вторичная переработка полимеров. Высокомолекулярные соединения, Серия С, 2000, 42, 11, 2000-2014) (Вельгош З., Полачек Й., Маховска С. // Пластические массы. 1998. №1. С.41-43).

Механическая переработка, также известная как недеструктивная вторичная переработка, представляет собой процесс преобразования утилизированных отходов пластмасс в повторно используемую форму для последующего производства. Достижения в области недеструктивных технологий регенерации полимеров позволили до некоторой степени улучшить качество переработанных полимеров, однако существуют фундаментальные ограничения подходов недеструктивных технологий, таких как физический захват пигментов в полимерной матрице.

Для преодоления фундаментальных ограничений механической переработки разрабатывалось множество способов очистки загрязненных полимеров с использованием химических подходов или химической переработки. В большинстве таких способов используются растворители для удаления примесей и очистки полимеров. Применение растворителей позволяет экстрагировать примеси и растворять полимеры, что дополнительно дает возможность применения альтернативных технологий разделения.

При помощи использования различных растворителей возможны сортировка и выделение таких полимеров, как полиэтилен, полипропилен, поливинилхлорид, полистирол, поликарбонат и полиамиды.

Для решения подобных задач существуют различные способы, которые находят широкое применение.

Известен способ деполимеризации отходов полиуретана путем его обработки активным органическим растворителем с последующим использованием полученного раствора (Горбат Т.В., Журавлев В.А., Онорина Л.Э., Кожинова Т.В., Ракк И.А. // Пластические массы. 2001. №4. С.39-40).

Известен способ превращения полиимидной пленки путем щелочного гидролиза до получения исходных мономеров - диаминов и тетракарбоновых кислот (RU590317, C08J 11/00, опубл. 30.01.1987).

Известен способ высокотемпературной переработки полимерных отходов (полиэтилен, полипропилен, полистирол), который заключается в их предварительном смешении, растворении в нефтяной дистиллированной фракции с температурой кипения 30-540°С при соотношении 1:5-1:20 и деструкции в реакторе при 500-520°С, атмосферном давлении, в присутствии катализатора сложного состава (Карнаухова Л.И., Гузева Л.И. // Пластические массы. 1999. №9. С.37-38). При этом получают в мас.% на исходное сырье: газ до С4 включительно (12.0); бензин Н.К. - 195°С (38.0); дизельная фракция 195-350°С (35.4); остаток > 350°С (12.5); кокс (2.0).

К основным недостаткам вышеперечисленных способов переработки и превращений полимерных материалов и их отходов следует отнести селективность способа к типу полимера, использование сильных кислот или щелочей в качестве растворителей, получение кислот в продуктах превращений, значительная дороговизна процессов деполимеризации, большое время, требующееся для достижения высокой степени превращения, сложный подготовительный процесс, сложные методы разделения продуктов превращений, а также проблемы, связанные с регенерацией растворителей, утилизацией отходов, что отражается на экономических показателях способов переработки полимерных отходов.

Известен способ разделения полимеров из физически соединенной твердой смеси (например, отходов полимеров), содержащей множество полимеров, с использованием растворителя при первой более низкой температуре с образованием первого однофазного раствора и остатков твердого компонента (US 519847, МПК B01D 11/02, B09B 3/00, C08F 6/00, C08F 6/04, C08J 11/08, опубл. 30.03.1993).

Кроме того, из указанного выше документа известно нагревание растворителя до более высоких температур для растворения дополнительных полимеров, которые не были извлечены при первой более низкой температуре, с описанием фильтрования нерастворимых полимерных компонентов.

Известен способ экстракции чистых полимерных компонентов из многокомпонентной структуры (например, отходов ковровой ткани) посредством растворения каждого компонента при соответствующей температуре и давлении в сверхкритической жидкости с последующим изменением температуры и/или давления для последовательной экстракции определенных компонентов. (US 5233021, МПК B29B 17/02, C08J 11/08, опубл. 03.08.1993)

Однако, в патентных документах US5198471, US5233021 раскрыто лишь только фильтрование нерастворенных компонентов.

Наиболее близким к заявленному изобретению является способ для непрерывного отделения полимерного компонента пластмассы от загрязняющих примесей и других компонентов пластмассы с использованием сорастворителя и рабочей жидкости (US5739270, МПК B01D11/02, C08J11/06, опубл. 14.04.1998 - прототип). Сорастворитель, по меньшей мере, частично растворяет полимер, а вторая жидкость (которая находится в жидком, критическом или сверхкритическом состоянии) солюбилизирует компоненты полимера и осаждает некоторые из растворенных полимеров из сорастворителя.

Кроме того, из указанного выше документа, известна стадия фильтрования смеси термопласта и сорастворителя (в присутствии или при отсутствии рабочей жидкости) для удаления загрязняющих частиц, таких как частицы стекла.

Недостатками известных способов очистки загрязненных полимеров с использованием растворителей является совместное растворение полимеров, а потому возникает загрязнение другими полимерами. При использовании адсорбента часто используется стадия фильтрования и/или центрифугирования для удаления адсорбента из раствора. Кроме того, для получения полимера, не содержащего остаточного растворителя, применяются процессы отделения полимера для удаления растворителя, например, нагревание, выпаривание под вакуумом и/или осаждение с использованием химического осадителя. Соответственно, для очистки загрязненных полимеров по-прежнему существует потребность в более совершенном способе, основанном на применении растворителя, легко и экономически выгодным образом удаляемого из полимера. Такой способ отличается сравнительной простотой с точки зрения числа отдельных операций, позволяет получать полимер без значительного количества загрязняющих полимеров.

Задачей, на решение которой направлено заявленное изобретение, является улучшение экологической обстановки за счет переработки легкой фракции твердых бытовых и промышленных отходов с отделением полиолефинов для последующего использования их в качестве вторичного сырья для производства изделий из полимеров.

Техническим результатом является отсутствие загрязнения полиолефинов другими полимерами после их экстракции, а также возможность легкого удаления растворителя из них.

Технический результат достигается тем, что способ переработки легкой фракции твердых бытовых и промышленных отходов с отделением полиолефинов включает получение агломерата указанной фракции, загрузку агломерата в экстрактор, нагревание экстрактора до температуры 40-70°С в токе инертного газа и утилизацию агломерата в три стадии, причем на первой стадии проводят экстракцию содержащихся в указанной фракции биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата жидким ароматическим растворителем и парогазовой смесью, содержащей инертный газ и водяной пар, при температуре в экстракторе 40-70°С и избыточном давлении 0,1-0,5 МПа с последующим повышением температуры в экстракторе до 130-140°С путем обработки агломерата парогазовой смесью, содержащей ароматический растворитель, инертный газ и водяной пар, при избыточном давлении 0,1-0,5 МПа, на второй стадии проводят экстракцию полиолефинов путем обработки агломерата ароматическим растворителем в токе инертного газа при температуре в экстракторе 130-140°С при избыточном давлении 0,1-0,5 МПа с последующим охлаждением смеси полиолефинов и ароматического растворителя до 20-30°С, отделением полиолефинов от ароматического растворителя сепарацией и сушкой полиолефинов в токе инертного газа, а на третьей стадии проводят отгонку ароматического растворителя от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 130-140°С и избыточном давлении 0,1-0,5 МПа, сушку агломерата в токе инертного газа с последующей его выгрузкой из экстрактора и сжиганием, при этом отношение массы, инертного газа, ароматического растворителя и водяного пара к массе аглормерата составляет 0,02-0,1,5-15, 0,3-0,7 соответственно.

Существует вариант, в котором инертный газ выбран из группы, включающей азот, аргон и углекислый газ.

Существует вариант, в котором ароматический растворитель выбран из группы, включающей бензол, толуол, орто-, пара- или мета-ксилол, этилбензол и кумол.

В таблице 1 (стр. 24) приведен состав легкой фракции твердых бытовых и промышленных отходов Коломенского мусоросортировочного комбината, в отношении которой было применен описанный выше способ.

Ниже приведены примеры осуществления заявленного изобретения.

Пример 1

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух азотом, а затем производили нагрев экстрактора с загруженным в него агломератом до 68°С в токе азота со скоростью 0,4 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата толуолом и парогазовой смесью, содержащей азот и водяной пар, при постоянном расходе азота 0,4 л/ч, толуола 600 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,2 мл/мин.

Обработку осуществляли при температуре в экстракторе 68°С и избыточном давлении 0,2 МПа.

Затем повышали температуру в экстракторе до 140°С путем обработки агломерата парогазовой смесью, содержащей толуол, азот и водяной пар, при избыточном давлении 0,2 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата толуолом в токе азота при температуре в экстракторе 140°С при избыточном давлении 0,2 МПа, причем постоянный расход азота составил 0,4 л/ч, а толуола 600 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и толуола до 20°С, с последующим отделением полиолефинов от толуола сепарацией (центрифугированием). Полученные полиолефины сушили в токе азота и определяли их выход.

На третьей стадии осуществляли отгонку толуола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре
140°С и избыточном давлении 0,2 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе азота при его расходе 0,4 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4.

Пример 2

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух азотом, а затем производили нагрев экстрактора с загруженным в него агломератом до 40°С в токе азота со скоростью 1,9 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата толуолом и парогазовой смесью, содержащей азот и водяной пар, при постоянном расходе азота 1,9 л/ч, толуола 757 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,5 мл/мин.

Обработку осуществляли при температуре в экстракторе 40°С и избыточном давлении 0,2 МПа.

Затем повышали температуру в экстракторе до 140°С путем обработки агломерата парогазовой смесью, содержащей толуол, азот и водяной пар, при избыточном давлении 0,2 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата толуолом в токе азота при температуре в экстракторе 140°С при избыточном давлении 0,2 МПа, причем постоянный расход азота составил 1,9 л/ч, а толуола 757 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и толуола до 23°С, с последующим отделением полиолефинов от толуола сепарацией (центрифугированием). Полученные полиолефины сушили в токе азота и определяли их выход.

На третьей стадии осуществляли отгонку толуола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 140°С и избыточном давлении 0,2 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе азота при его расходе 1,9 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4.

Пример 3

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух азотом, а затем производили нагрев экстрактора с загруженным в него агломератом до 70°С в токе аргона со скоростью 1,23 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата толуолом и парогазовой смесью, содержащей аргон и водяной пар, при постоянном расходе аргона 1,23 л/ч, толуола 234 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,5 мл/мин.

Обработку осуществляли при температуре в экстракторе 70°С и избыточном давлении 0,25 МПа.

Затем повышали температуру в экстракторе до 140°С путем обработки агломерата парогазовой смесью, содержащей толуол, азот и водяной пар, при избыточном давлении 0,25 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата толуолом в токе аргона при температуре в экстракторе 140°С при избыточном давлении 0,25 МПа, причем постоянный расход аргона составил 1,23 л/ч, а толуола 234 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и толуола до 25°С, с последующим отделением полиолефинов от толуола сепарацией (центрифугированием). Полученные полиолефины сушили в токе аргона и определяли их выход.

На третьей стадии осуществляли отгонку толуола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 140°С и избыточном давлении 0,25 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе аргона при его расходе 1,23 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4.

Пример 4

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух аргоном, а затем производили нагрев экстрактора с загруженным в него агломератом до 69°С в токе аргона со скоростью 0,42 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата бензолом и парогазовой смесью, содержащей аргон и водяной пар, при постоянном расходе аргона 0,42 л/ч, бензола 600 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,2 мл/мин.

Обработку осуществляли при температуре в экстракторе 69°С и избыточном давлении 0,3 МПа.

Затем повышали температуру в экстракторе до 130°С путем обработки агломерата парогазовой смесью, содержащей бензол, аргон и водяной пар, при избыточном давлении 0,3 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата бензолом в токе аргона при температуре в экстракторе 130°С при избыточном давлении 0,3 МПа, причем постоянный расход аргона составил 0,42 л/ч, бензола 600 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и бензола до 26°С, с последующим отделением полиолефинов от бензола сепарацией (центрифугированием). Полученные полиолефины сушили в токе аргона и определяли их выход.

На третьей стадии осуществляли отгонку бензола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 130°С и избыточном давлении 0,3 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе аргона при его расходе 0,42 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4.

Пример 5

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух углекислым газом, а затем производили нагрев экстрактора с загруженным в него агломератом до 67°С в токе углекислого газа со скоростью 1,7 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата бензолом и парогазовой смесью, содержащей углекислый газ и водяной пар, при постоянном расходе углекислого газа 1,7 л/ч, бензола 722 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,5 мл/мин.

Обработку осуществляли при температуре в экстракторе 67°С и избыточном давлении 0,3 Мпа.

Затем повышали температуру в экстракторе до 140°С путем обработки агломерата парогазовой смесью, содержащей бензол, углекислый газ и водяной пар, при избыточном давлении 0,3 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата бензолом в токе углекислого газа при температуре в экстракторе 140°С при избыточном давлении 0,3 МПа, причем постоянный расход углекислого газа составил 1,7 л/ч, а бензола 600 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и бензола до 28°С, с последующим отделением полиолефинов от бензола сепарацией (центрифугированием). Полученные полиолефины сушили в токе углекислого газа и определяли их выход.

На третьей стадии осуществляли отгонку бензола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 140°С и избыточном давлении 0,3 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе углекислого газа при его расходе 1,7 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4.

Пример 6

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух углекислым газом, а затем производили нагрев экстрактора с загруженным в него агломератом до 70°С в токе углекислого газа со скоростью 1,2 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата бензолом и парогазовой смесью, содержащей углекислый газ и водяной пар, при постоянном расходе углекислого газа 1,2 л/ч, бензола 254 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,5 мл/мин.

Обработку осуществляли при температуре в экстракторе 70°С и избыточном давлении 0,2 МПа.

Затем повышали температуру в экстракторе до 130°С путем обработки агломерата парогазовой смесью, содержащей бензол, углекислый газ и водяной пар, при избыточном давлении 0,2 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата бензолом в токе углекислого газа при температуре в экстракторе 130°С при избыточном давлении 0,2 МПа, причем постоянный расход углекислого газа составил 1,2 л/ч, а бензола 254 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и бензола до 30°С, с последующим отделением полиолефинов от бензола сепарацией (центрифугированием). Полученные полиолефины сушили в токе углекислого газа и определяли их выход.

На третьей стадии осуществляли отгонку бензола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре
130°С и избыточном давлении 0,2 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе углекислого газа при его расходе 1,2 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4.

Пример 7

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух азотом, а затем производили нагрев экстрактора с загруженным в него агломератом до 57°С в токе азота со скоростью 1,8 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата этилбензолом и парогазовой смесью, содержащей азот и водяной пар, при постоянном расходе азота 1,8 л/ч, этилбензола 610 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,5 мл/мин.

Обработку осуществляли при температуре в экстракторе 57°С и избыточном давлении 0,4 МПа.

Затем повышали температуру в экстракторе до 135°С путем обработки агломерата парогазовой смесью, содержащей этилбензол, азот и водяной пар, при избыточном давлении 0,4 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата этилбензолом в токе азота при температуре в экстракторе 135°С при избыточном давлении 0,4 МПа, причем постоянный расход азота составил 1,8 л/ч, а этилбензола 610 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и этилбензола до 22°С, с последующим отделением полиолефинов от этилбензола сепарацией (центрифугированием). Полученные полиолефины сушили в токе азота и определяли их выход.

На третьей стадии осуществляли отгонку этилбензола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 135°С и избыточном давлении 0,4 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе азота при его расходе 1,8 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4.

Пример 8

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух азотом, а затем производили нагрев экстрактора с загруженным в него агломератом до 70°С в токе азота со скоростью 1,7 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата этилбензолом и парогазовой смесью, содержащей азот и водяной пар, при постоянном расходе азота 1,7 л/ч, этилбензола 685 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,5 мл/мин.

Обработку осуществляли при температуре в экстракторе 70°С и избыточном давлении 0,1 МПа.

Затем повышали температуру в экстракторе до 140°С путем обработки агломерата парогазовой смесью, содержащей этилбензол, азот и водяной пар, при избыточном давлении 0,1 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата этилбензолом в токе азота при температуре в экстракторе 140°С при избыточном давлении 0,1 МПа, причем постоянный расход азота составил 1,7 л/ч, а этилбензола 685 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и этилбензола до 20°С, с последующим отделением полиолефинов от этилбензола сепарацией (центрифугированием). Полученные полиолефины сушили в токе азота и определяли их выход.

На третьей стадии осуществляли отгонку этилбензола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 140°С и избыточном давлении 0,1 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе азота при его расходе 1,7 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4.

Пример 9

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух азотом, а затем производили нагрев экстрактора с загруженным в него агломератом до 50°С в токе азота со скоростью 1,8 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата орто-ксилолом и парогазовой смесью, содержащей азот и водяной пар, при постоянном расходе азота 1,8 л/ч, орто-ксилола 250 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,5 мл/мин.

Обработку осуществляли при температуре в экстракторе 500°С и избыточном давлении 0,4 МПа.

Затем повышали температуру в экстракторе до 132°С путем обработки агломерата парогазовой смесью, содержащей орто-ксилол, азот и водяной пар, при избыточном давлении 0,4 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата орто-ксилолом в токе азота при температуре в экстракторе 132°С при избыточном давлении 0,4 МПа, причем постоянный расход азота составил 1,8 л/ч, орто-ксилола 250 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и орто-ксилола до 21°С, с последующим отделением полиолефинов от орто-ксилола сепарацией (центрифугированием). Полученные полиолефины сушили в токе азота и определяли их выход.

На третьей стадии осуществляли отгонку орто-ксилола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 132°С и избыточном давлении 0,4 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе азота при его расходе 1,8 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4.

Пример 10

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух азотом, а затем производили нагрев экстрактора с загруженным в него агломератом до 45°С в токе азота со скоростью 1,8 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата пара-ксилолом и парогазовой смесью, содержащей азот и водяной пар, при постоянном расходе азота 1,8 л/ч, пара-ксилола 250 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,5 мл/мин.

Обработку осуществляли при температуре в экстракторе 45°С и избыточном давлении 0,5 МПа.

Затем повышали температуру в экстракторе до 130°С путем обработки агломерата парогазовой смесью, содержащей пара-ксилол, азот и водяной пар, при избыточном давлении 0,5 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата пара-ксилолом в токе азота при температуре в экстракторе 130°С при избыточном давлении 0,5 МПа, причем постоянный расход азота составил 1,8 л/ч, пара-ксилола 250 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и пара-ксилола до 26°С, с последующим отделением полиолефинов от пара-ксилола сепарацией (центрифугированием). Полученные полиолефины сушили в токе азота и определяли их выход.

На третьей стадии осуществляли отгонку пара-ксилола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 130°С и избыточном давлении 0,5 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе азота при его расходе 1,8 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4

Пример 11

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух азотом, а затем производили нагрев экстрактора с загруженным в него агломератом до 65°С в токе азота со скоростью 1,7 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата мета-ксилолом и парогазовой смесью, содержащей азот и водяной пар, при постоянном расходе азота 1,7 л/ч, мета-ксилола 248 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,5 мл/мин.

Обработку осуществляли при температуре в экстракторе 65°С и избыточном давлении 0,3 МПа.

Затем повышали температуру в экстракторе до 140°С путем обработки агломерата парогазовой смесью, содержащей мета-ксилол, азот и водяной пар, при избыточном давлении 0,3 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата мета-ксилолом в токе азота при температуре в экстракторе 140°С при избыточном давлении 0,3 МПа, причем постоянный расход азота составил 1,7 л/ч, мета-ксилола 248 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и мета-ксилола до 28°С, с последующим отделением полиолефинов от мета-ксилола сепарацией (центрифугированием). Полученные полиолефины сушили в токе азота и определяли их выход.

На третьей стадии осуществляли отгонку мета-ксилола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 140°С и избыточном давлении 0,3 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе азота при его расходе 1,7 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4

Пример 12

Легкая фракция твердых бытовых и промышленных отходов была получена путем ручной и машинной сортировки. Получение агломерата указанной фракции осуществлялось на двухроторном агломераторе АПР-30х2 с последующей его сушкой до постоянной массы. Насыпная масса высушенного агломерата составляла 0,13 г/см3.

Высушенный агломерат загружали в экстрактор объемом 300 см3. Из экстрактора вытесняли воздух азотом, а затем производили нагрев экстрактора с загруженным в него агломератом до 70°С в токе азота со скоростью 1,7 л/ч.

После чего проводили утилизацию агломерата в три стадии.

На первой стадии проводили экстракцию биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата кумолом и парогазовой смесью, содержащей азот и водяной пар, при постоянном расходе азота 1,7 л/ч, кумола 248 мл/ч, а также водяного пара, полученного подачей воды на парогенератор со скоростью 0,5 мл/мин.

Обработку осуществляли при температуре в экстракторе 70°С и избыточном давлении 0,1 МПа.

Затем повышали температуру в экстракторе до 138°С путем обработки агломерата парогазовой смесью, содержащей кумол, азот и водяной пар, при избыточном давлении 0,1 МПа, не изменяя их расхода.

На второй стадии проводили экстракцию полиолефинов путем обработки агломерата кумолом в токе азота при температуре в экстракторе 138°С при избыточном давлении 0,1 МПа, причем постоянный расход азота составил 1,7 л/ч, кумола 248 мл/ч, а подачу водяного пара в экстрактор отключали. Затем проводили охлаждение смеси полиолефинов и кумола до 20°С, с последующим отделением полиолефинов от кумола сепарацией (центрифугированием). Полученные полиолефины сушили в токе азота и определяли их выход.

На третьей стадии осуществляли отгонку кумола от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 138°С и избыточном давлении 0,1 МПа посредством подачи воды на парогенератор. Затем осуществляли сушку агломерата в токе азота при его расходе 1,7 л/ч с последующей его выгрузкой из экстрактора и сжиганием, после чего определяли выход агломерата с определением его зольности.

Показатели условий проведения технологических процессов на стадиях утилизации агломерата приведены в таблице 2.

Показатели материального баланса приведены в таблице 3.

Свойства и характеристики полученных продуктов на первой и второй стадиях приведены в таблице 4 (стр. 29).

Данные таблиц 2, 3 (стр. 25-28) показывают, что утилизация агломерата легкой фракции твердых бытовых и промышленных отходов с отделением полиолефинов согласно заявленному изобретению в примерах 1 и 2 приводит к максимальному выходу полиолефинов при использовании в качестве растворителя толуола, при этом выход полиолефинов возрастает с увеличением скорости подачи ароматического растворителя.

При этом показатели качества полиолефинов таблица 4 остаются практически постоянными и в основном зависят только от гомолога ароматического соединения. В составе получаемых полиолефинов были обнаружены следовые количества галогенсодержащих соединений, что, по-видимому, связано с механическим уносом галогенсодержащих соединений потоком ароматического растворителя, азот содержащих соединений в полиолефинах не обнаружено.

Таким образом, раскрытое выше изобретение во всех примерах его осуществления позволяет обеспечить достижение заявленного технического результата.

Таблица 1. Состав легкой фракции твердых бытовых и промышленных отходов Коломенского мусоросортировочного комбината
Компонент Содержание компонента, мас. %
Влага (вода) 37,9 - 42,2
Биологические отходы, растворимые реактивные полимеры, смолы и клеи 6,7 - 6,2
Полиолефины 29,3 - 27,3
Сжигаемый остаток (целлюлоза и др.) 14,6 - 15,8
Зола (твердый остаток после сжигания) 8,5 - 11,5

Таблица 2 - Условия проведения утилизации агломерата

Номер примера Номер стадии Отношение массы инертного газа к массе к массе агломерата Отношение массы ароматического растворителя к массе к массе агломерата Отношение массы водяного пара к массе агломерата Температура T,°С Избыточное давление P, МПа Время проведения стадии, мин.
1 2 3 4 5 6 7 8
1 1 0,02 12,5 0,3 68 0,2 40
2 0,02 12,5 0,3 140 0,2 80
3 0,02 - 0,3 140 0,2 40
2 1 0,1 15 0,7 40 0,2 40
2 0,1 15 0,7 140 0,2 80
3 0,1 - 0,7 140 0,2 40
3 1 0,07 5 0,7 70 0,25 40
2 0,07 5 0,7 140 0,25 80
3 0,07 - 0,7 140 0,25 40
4 1 0,024 12,6 0,31 69 0,3 40
2 0,024 12,6 0,31 130 0,3 80
3 0,024 - 0,31 130 0,3 40
5 1 0,095 14,8 0,69 67 0,3 40
2 0,095 14,8 0,69 140 0,3 80
3 0,095 - 0,69 140 0,3 40
6 1 0,067 5,2 0,69 70 0,2 40
2 0,067 5,2 0,69 130 0,2 80
3 0,067 - 0,69 130 0,2 40

Продолжение Таблицы 2
1 2 3 4 5 6 7 8
7 1 0,1 12,3 0,7 57 0,4 40
2 0,1 12,3 0,7 135 0,4 80
3 0,1 - 0,7 135 0,4 40
8 1 0,1 14,5 0,7 70 0,1 40
2 0,1 14,5 0,7 140 0,1 80
3 0,1 - 0,7 140 0,1 40
9 1 0,1 5,2 0,7 50 0,4 40
2 0,1 5,2 0,7 132 0,4 80
3 0,1 - 0,7 132 0,4 40
10 1 0,1 5,1 0,7 45 0,5 40
2 0,1 5,1 0,7 130 0,5 80
3 0,1 - 0,7 130 0,5 40
11 1 0,1 5,1 0,7 65 0,3 40
2 0,1 5,1 0,7 140 0,3 80
3 0,1 - 0,7 140 0,3 40
12 1 0,1 5,0 0,7 70 0,1 40
2 0,1 5,0 0,7 138 0,1 80
3 0,1 - 0,7 138 0,1 40

Таблица 3 - Материальный баланс утилизации агломерата

Пример Стадия Расход Приход
Масса агломерата, г Инертный газ, л/ч Ароматический растворитель, мл/ч Вода, мл/мин. Биологические отходы, растворимые реактивные полимеры, смолы и клеи, г/мас. % Полиолефины, г/мас. % Остаток агломерата после экстракции,
г/мас. %
Зола (твердый остаток агломерата после сжигания), г/мас.%
1 2 3 4 5 6 7 8 9 10
1 1 42 0,4 600 0,2 4,5/10,8 - - -
2 600 - - 19,8/47,2 - -
3 - 0,2 - - 17,7/42,0 7,7/18,3
2 1 44 1,9 757 0,5 5,1/11,5 - - -
2 757 - - 21,6/49,1 - -
3 - 0,5 - - 17,3/39,4 6,9/15,6
3 1 41 1,23 234 0,5 2,5/6,2 - - -
2 234 - - 11,6/28,2 - -
3 - 0,5 - - 26,9/65,6 8,4/20,5
4 1 42 0,42 600 0,2 3,7/8,8 - - -
2 600 - - 16,5/39,3 - -
3 - 0,2 - - 21,8/51,9 8,0/19,1
5 1 43 1,7 722 0,5 4,0/9,3 - - -
2 722 - - 17,6/40,9 - -
3 - 0,5 - - 21,4/49,8 7,8/18,1
6 1 43 1,2 254 0,5 2,3/5,3 - - -
2 254 - - 9,9/23,2 - -
3 - 0,5 - - 30,8/71,5 17,1/39,7
Продолжение Таблицы 3
1 2 3 4 5 6 7 8 9 10
7 1 43 1,8 610 0,5 4,1/9,5 - - -
2 610 - - 17,9/41,7 - -
3 - 0,2 - - 21,0/48,8 8,2/19,1
8 1 41 1,7 685 0,5 4,2/10,2 - - -
2 685 - - 18,9/46,1 - -
3 - 0,5 - - 17,9/43,7 7,0/17,1
9 1 43 1,8 250 0,5 4,3/10,1 - - -
2 250 - - 16,0/37,2 - -
3 - 0,5 - - 22,7/52,7 8,1/18,9
10 1 43 1,8 250 0,5 3,3/7,8 - - -
2 250 - - 12,1/28,1 - -
3 - 0,5 - - 27,6/64,1 10,0/23,3
11 1 42 1,7 248 0,5 2,2/5,3 - - -
2 248 - - 8,2/19,4 - -
3 - 0,5 - - 31,6/75,3 13,2/31,5
12 1 42 1,7 248 0,5 4,6/9,9 - - -
2 248 - - 14,8/36,2 - -
3 - 0,5 - - 22,6/53,9 8,4/20,1

Таблица 4 - Свойства получаемых продуктов на первой и второй стадии утилизации агломерата
Пример Стадия/растворитель Биологические отходы, растворимые реактивные полимеры, смолы и клеи Полиолефины
Температура плавления T, 0С Содержание галогенов, % масс.
ГОСТ 25303-92
Содержание азота,
Проба Лассеня
Зольность Плотность
ГОСТ 15139-69 пикнометр
Размягчение
В 120
Гост 15088-2014
Удельное сопротивление
ГОСТ Р 50499-93
1, 2, 3 1/ Толуол 110 - - - - - -
2/ Толуол - 0,2 отс 2,1 0,931 79 10*15
4, 5, 6 1/ Бензол 110 - - - - - -
2/ Бензол - 0,2 отс 1,9 0,935 80 10*15
7, 8 1/ Этилбензол 110 - - - - - -
2/ Этилбензол - 0,2 отс 2,2 0,932 79 10*15
9 1/ Орто-Ксилол 110 - - - - - -
2/ Орто-Ксилол - 0,2 отс 2,7 0,936 80 10*15
10 1/Пара-Ксилол 110 - - - - - -
2/Пара-Ксилол - 0,2 отс 2,3 0,932 78 10*15
11 1/Мета-Ксилол 110 - - - - - -
2/Мета-Ксилол - 0,2 отс 2,3 0,932 78 10*15
12 1/Кумол 110 - - - - - -
2/Кумол - 0,2 отс 2,6 0,935 79 10*15

1. Способ переработки легкой фракции твердых бытовых и промышленных отходов с отделением полиолефинов, включающий получение агломерата указанной фракции, загрузку агломерата в экстрактор, нагревание экстрактора до температуры 40-70°С в токе инертного газа и утилизацию агломерата в три стадии, причем на первой стадии проводят экстракцию содержащихся в указанной фракции биологических отходов, растворимых реактивных полимеров, смол и клеев путем обработки агломерата жидким ароматическим растворителем и парогазовой смесью, содержащей инертный газ и водяной пар, при температуре в экстракторе 40-70°С и избыточном давлении 0,1-0,5 МПа с последующим повышением температуры в экстракторе до 130-140°С путем обработки агломерата парогазовой смесью, содержащей ароматический растворитель, инертный газ и водяной пар, при избыточном давлении 0,1- 0,5 МПа, на второй стадии проводят экстракцию полиолефинов путем обработки агломерата ароматическим растворителем в токе инертного газа при температуре в экстракторе 130-140°С при избыточном давлении 0,1-0,5 МПа с последующим охлаждением смеси полиолефинов и ароматического растворителя до 20-30°С, отделением полиолефинов от ароматического растворителя сепарацией и сушкой полиолефинов в токе инертного газа, а на третьей стадии проводят отгонку ароматического растворителя от оставшегося после экстракции полиолефинов агломерата водяным паром при температуре 130-140°С и избыточном давлении 0,1–0,5 МПа, сушку агломерата в токе инертного газа с последующей его выгрузкой из экстрактора и сжиганием, при этом отношение массы инертного газа, ароматического растворителя и водяного пара к массе агломерата составляет 0,02-0,1, 5-15, 0,3-0,7 соответственно.

2. Способ по п. 1, отличающийся тем, что инертный газ выбран из группы, включающей азот, аргон и углекислый газ.

3. Способ по п. 1, отличающийся тем, что ароматический растворитель выбран из группы, включающей бензол, толуол, орто-, пара- или мета-ксилол, этилбензол и кумол.



 

Похожие патенты:
Изобретение может быть использовано для склеивания изделий из пористых и волокнистых материалов, кожзаменителей, напольных покрытий, обуви и обувных материалов. Клеевая композиция на основе полихлоропренового каучука содержит бутилфенолформальдегидную смолу, наполнитель - оксид цинка и оксид магния, противостаритель агидол, воду, антистатическую присадку и растворитель.

Изобретение относится к способам очистки. Описан способ очистки регенерированного полиэтилена, причем регенерированный полиэтилен выбирают из группы, состоящей из полимеров после бытового использования, полимеров после промышленного использования и их комбинаций, включающий приведение регенерированного полиэтилена в контакт с первым жидким растворителем, растворение экстрагированного регенерированного полиэтилена в растворителе, выбранном из группы, состоящей из первого жидкого растворителя, второго жидкого растворителя и их смесей, отстаивание первого раствора, содержащего полиэтилен, по меньшей мере одну растворенную загрязняющую примесь и по меньшей мере одну взвешенную загрязняющую примесь, с получением второго раствора, содержащего полиэтилен, по меньшей мере одну растворенную загрязняющую примесь и меньшее количество по меньшей мере одной взвешенной загрязняющей примеси; фильтрование второго раствора с получением третьего раствора, содержащего более чистый полиэтилен, по меньшей мере одну растворенную загрязняющую примесь и еще меньшее количество по меньшей мере одной взвешенной загрязняющей примеси; отделение более чистого полиэтилена от третьего раствора; причем второй жидкий растворитель имеет тот же химический состав, что и первый жидкий растворитель, или другой химический состав, и жидкий растворитель выбирают из группы, состоящей из олефиновых углеводородов, алифатических углеводородов и их смесей, причем алифатический углеводород предпочтительно выбирают из группы, состоящей из алифатических углеводородов C1-С6 и их смесей.

Изобретение относится к способу переработки отходов, содержащих полиолефин, с использованием растворителя с определенным параметром Хансена и приведение в контакт этой смеси с жидким средством для фильтрации перед отделением полиолефина от смеси. Способ включает следующие стадии: смешивание отходов, содержащих полиолефин, с растворителем, имеющим параметр Хансена δН от 0,0 до 3,0 МПа1/2; приведение в контакт этой смеси с жидким средством для фильтрации, имеющим параметр Хансена δH>4,0 МПа1/2, причем полярный растворитель ускоряет осаждение примесей и отделение полиолефина от смеси.

Изобретение относится к способу отделения полимеров от регенерированного продукта (rP) и их очистки. rP приводят в контакт при повышенной температуре и давлении с экстрагирующим растворителем с получением экстрагированного rP (erP).

Изобретение относится к способу очистки загрязненных полимеров с использованием растворителя под давлением и твердых сред. Способ очистки регенерированного полипропилена включает получение регенерированного полипропилена и приведение его в контакт с жидким растворителем при повышенной температуре и давлении с получением экстрагированного регенерированного полипропилена.

Предложен способ очистки регенерированного полиэтилена. Способ включает в себя получение регенерированного полиэтилена, приведение его в контакт с первым жидким растворителем с получением экстрагированного регенерированного полиэтилена, а затем растворение экстрагированного регенерированного полиэтилена в растворителе с получением первого раствора, содержащего полиэтилен и суспендированные загрязняющие примеси.

Изобретение относится к способу очистки загрязненных полимеров с использованием растворителя под давлением и твердых сред. Способ очистки регенерированного полимера, например полимера, регенерированного после бытового использования или после промышленного использования, включает получение регенерированного полимера и приведение его в контакт с жидким растворителем при повышенной температуре и давлении с получением экстрагированного регенерированного полимера.

Изобретение относится к способу повышения чистоты и качества материалов, в том числе синтетических материалов, восстанавливаемых за счет переработки одноразовых впитывающих изделий, а именно простого и экономичного способа разделения материалов одноразового впитывающего изделия, удаления текучей среды, впитанной сверхвпитывающими полимерами (SAP), и восстановления составляющих материалов, таких как полимер, целлюлозные волокна и сверхвпитывающий полимер.

В изобретении описан способ очистки регенерированного полиэтилена, например полиэтилена, регенерированного после бытового использования или после промышленного использования. Способ включает получение регенерированного полиэтилена и приведение его в контакт с первым жидким растворителем при повышенной температуре и давлении с получением экстрагированного регенерированного полиэтилена.

Настоящее изобретение относится к способу очистки регенерированного полиолефинового гомополимера или сополимера, включающему: a) получение регенерированного полиолефинового гомополимера или сополимера, причем упомянутый регенерированный полиолефиновый гомополимер или сополимер выбирают из группы, состоящей из полимеров после бытового использования, полимеров после промышленного использования и их комбинаций; b) приведение в контакт регенерированного полиолефинового гомополимера или сополимера при температуре от 80 до 220°C и при давлении от 1,03 МПа (150 фунтов на кв.

Изобретение относится к способу использования технологических отходов при приготовлении полимерных композиций. Способ используется при создании технологий приготовления композиций на основе полимерной матрицы, состоящей из сополимера пропилена с этиленом с добавлением каучука синтетического термостойкого низкомолекулярного по отношению к массе сополимера пропилена с этиленом 0,5-1,0%, вместе представляющих полимерное сырье, и наполнителя в виде порошка металла, представляющего собой порошок любого металла, плотность которого находится в диапазоне от 11,3 г/см3 до 19,3 г/см3, и изготовления деталей из этих композиций.
Наверх