Термоэлектрический интенсификатор теплопередачи между потоками сред с различной температурой



H01L35/00 - Термоэлектрические приборы, содержащие переход между различными материалами, т.е. приборы, основанные на эффекте Зеебека или эффекте Пельтье, с другими термоэлектрическими и термомагнитными эффектами или без них; способы и устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, H01L 27/00; холодильное оборудование, в котором используются электрические или магнитные эффекты, F25B 21/00; измерение температуры с использованием термоэлектрических и термомагнитных элементов G01K 7/00; получение энергии от радиоактивных источников G21H)

Владельцы патента RU 2788025:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Грозненский государственный нефтяной технический университет имени акад. М.Д. Миллионщикова" (RU)

Изобретение относится к теплотехнике и может быть использовано в термоэлектрических устройствах для интенсификации теплообмена. В термоэлектрическом интенсификаторе теплопередачи в транспортных зонах перпендикулярно направлению движения сред выполнены сквозные отверстия. Над сквозными отверстиями устанавливаются вентиляторные агрегаты, осуществляющие продув воздуха в сквозных отверстиях. Скорость вращения вентиляторных агрегатов увеличивается в направлении к концу транспортных зон. Внутри сквозных отверстий располагаются дозаторы, наполненные водой и впрыскивающие ее в окружающее пространство в момент работы устройства. Технический результат - интенсификация теплообмена между термоэлектрической батареей и обтекающими ее средами. 1 ил.

 

Изобретение относится к термоэлектрической технике, в частности к термоэлектрическим устройствам для интенсификации теплообмена между потоками жидкостей или газов (средами) с различной температурой.

Прототипом является конструкция, описанная в [1]. в 1. Каганов М.А., Привин М.Р. Термоэлектрические тепловые насосы. Л.: Энергия. - 1970. - с. 175. Устройство состоит из термоэлектрической батареи, составленной из идентичных по размерам и физическим свойствам термоэлементов, одна поверхность которой через разделяющую стенку транспортной зоны обтекается средой с более низкой температурой, а другая также через разделяющую стенку - средой с более высокой температурой. Термоэлектрическая батарея выполняет функции интенсификатора теплопередачи между двумя потоками жидкости или газа за счет поглощения и выделения теплоты Пельтье на спаях термоэлементов, находящихся в тепловом контакте с ними.

Недостатком устройства является относительно низкая интенсивность теплообмена между спаями термоэлементов, составляющих термоэлектрическую батарею, и соответствующими средами. Данное обстоятельство связано с теплообменом между средами и термоэлектрической батареей только за счет кондуктивного механизма, при котором коэффициент теплопередачи достаточно невысок.

Техническим результатом является интенсификация теплообмена между термоэлектрической батареей и обтекающими ее средами.

Техническое решение достигается тем, что в транспортных зонах, перпендикулярно направлению движения сред выполнены сквозные отверстия, причем над сквозными отверстиями обоих транспортных зон устанавливаются вентиляторные агрегаты, количество которых варьируется от трех до пяти, запитываемые от дополнительного источника электрической энергии, осуществляющие продув воздуха в сквозных отверстиях таким образом, чтобы поток воздуха шел от поверхностей термоэлектрической батареи. Скорость вращения вентиляторных агрегатов увеличивается в направлении к концу транспортных зон. Внутри сквозных отверстий располагаются специальные дозаторы, наполненные водой и впрыскивающие ее в окружающее пространство в момент работы устройства.

Конструкция термоэлектрического интенсификатора теплопередачи приведена на фиг. 1. Устройство состоит из термоэлектрической батареи 1, составленной из идентичных по размерам и физическим свойствам термоэлементов, питаемой основным источником электрической энергии (на фиг. не показан), обе поверхности которой имеют непосредственный тепловой контакт со стенками 2 транспортных зон 3 с движущимися в них средами 4. В транспортных зонах 3, перпендикулярно направлению движения сред 4, выполнены сквозные отверстия 5. Над сквозными отверстиями 5 обоих транспортных зон устанавливаются вентиляторные агрегаты 6, количество которых варьируется от трех до пяти, запитываемые от дополнительного источника электрической энергии (на фиг. не показан). Вентиляторные агрегаты 6 осуществляют продув воздуха в сквозных отверстиях 5 таким образом, чтобы поток воздуха шел от поверхностей термоэлектрической батареи 1. При этом скорость вращения вентиляторных агрегатов увеличивается в направлении к концу транспортных зон. Внутри сквозных отверстий располагаются специальные дозаторы 7, наполненные водой и впрыскивающие ее в окружающее пространство в момент работы устройства.

Термоэлектрический интенсификатор теплопередачи работает следующим образом. При пропускании через термоэлектрическую батарею 1 постоянного электрического тока от источника энергии на одних спаях термоэлементов будет поглощаться теплота Пельтье, а на других - выделяться. Если холодные спаи термоэлементов будут находиться в непосредственном контакте со стенкой 2 транспортной зоны 3 с горячей движущейся средой 4, а горячие спаи термоэлементов - со стенкой 2 транспортной зоны 3 с холодной движущейся средой, то за счет имеющегося перепада температур будет происходить интенсификация обмена тепловой энергией между двумя потоками сред. Продув воздуха в сквозных отверстиях 5 воздушными агрегатами 6 даст возможность дополнительно к кондуктивному теплообмену между поверхностями термоэлектрической батареи 1 и стенками 2 транспортных зон добавить конвективный теплообмен между воздушным потоком, направленным от холодной и горячей поверхностей термоэлектрической батареи 1 и транспортными зонами 3. При этом значение коэффициента теплообмена в случае конвективного теплообмена при увлажненном воздухе будет выше, чем в случае конвективного теплообмена при сухом воздухе. Одновременно также увеличение скорости вращения вентиляторных агрегатов 6 в направлении к концу транспортных зон позволяет скомпенсировать уменьшение температурного напора между средами в данном направлении за счет увеличения интенсивности теплообмена между ними (увеличения коэффициента теплопередачи).

Термоэлектрический интенсификатор теплопередачи между потоками сред с различной температурой, состоящий из термоэлектрической батареи, составленной из идентичных по размерам и физическим свойствам термоэлементов, питаемой основным источником электрической энергии, одна поверхность которой через разделяющую стенку транспортной зоны обтекается средой с более низкой температурой, а другая также через разделяющую стенку транспортной зоны - средой с более высокой температурой, отличающийся тем, что в транспортных зонах перпендикулярно направлению движения сред выполнены сквозные отверстия, причем над сквозными отверстиями обоих транспортных зон устанавливаются вентиляторные агрегаты, количество которых варьируется от трех до пяти, запитываемые от дополнительного источника электрической энергии, осуществляющие продув воздуха в сквозных отверстиях таким образом, чтобы поток воздуха шел от поверхностей термоэлектрической батареи, причем скорость вращения вентиляторных агрегатов увеличивается в направлении к концу транспортных зон, при этом внутри сквозных отверстий располагаются дозаторы, наполненные водой и впрыскивающие ее в окружающее пространство в момент работы устройства.



 

Похожие патенты:

Изобретение относится к отрасли энергетики, а именно к устройствам, предназначенным для вторичного использования теплоты и холода. Теплоутилизатор на тепловых трубках снабжен термоэлектрическим тепловым насосом, представляющим собой тепловые трубки и термоэлектрическую сборку, включающую термоэлектрический модуль с холодными и горячими спаями, при этом к холодным спаям прилегает конденсатор транспортной тепловой трубки с зоной испарения, оребренный испаритель которой установлен в испарительной секции перед тепловыми трубками напротив вытяжного электровентилятора, к горячим спаям прилегает испаритель транспортной тепловой трубкой с зоной конденсации, оребренный конденсатор которой установлен в конденсаторной секции перед тепловыми трубками напротив приточного электровентилятора, причем одной стороной конденсаторная секция присоединена приточным воздуховодом к приточной системе вентиляции помещения, а противоположной стороной через приточный электровентилятор - к заборнику наружного воздуха, испарительная секция одной стороной присоединена к вытяжному воздуховоду, а противоположной стороной через вытяжной электровентилятор - к шахте удаляемого воздуха, при этом блок управления соединен с термоэлектрическим модулем, вытяжным и приточным электровентиляторами.

Изобретение относится к технике опреснения морских и соленых вод и может быть использовано для получения опресненной воды и попутной генерации электрической энергии. Опреснитель-электрогенератор содержит прямоугольный корпус из теплопроводящего материала, крышка которого покрыта сверху фотоэлементами и снабжена накопительным блоком.

Изобретение относится к теплоэлектроэнергетике для обеспечения тепловой и электрической энергией в местах временного проживания, а именно в палатках, передвижных домиках, путем одновременного получения тепловой и электрической энергии в одном аппарате. Мобильный автономный теплоэлектрогенератор содержит вертикальный короб, перекрытый с торцов крышкой, снабженной газовым патрубком, соединенным с дымовой трубой и днищем, с образованием между ними внутренней полости, в которой расположена топка.

Изобретение относится к теплотехнике, в частности к термоэлектрическим устройствам для интенсификации теплообмена между потоками жидкостей или газов (средами) с различной температурой. Устройство состоит из термоэлектрической батареи, составленной из идентичных по размерам и физическим свойствам термоэлементов, питаемой основным источником электрической энергии, обе поверхности которой имеют непосредственный тепловой контакт со стенками транспортных зон с движущимися в них средами.

Изобретения относятся к области электротехники, в частности к автономным источникам энергии, и могут быть использованы для обеспечения возможности работы термоэлектрического генератора (ТЭГ) на подзарядку аккумуляторной батареи (АБ) при различных уровнях напряжений. Технический результат заключается в повышении эффективности работы ТЭГ путем преобразования в импульсном полупроводниковом преобразователе уровней напряжения и тока таким образом, чтобы подстроить входное сопротивление потребителя электрической энергии (зарядного устройства) к значению выходного сопротивления ТЭГ.

Изобретение относится к области преобразования тепловой энергии в электрическую и/или механическую посредством устройств на основе термоэлектрического и термомагнитного метода преобразования тепловой энергии. Устройство для преобразования тепловой энергии в электрическую и/или механическую содержит один или несколько термоэлектрических и/или термомагнитных преобразователей энергии, содержащих термочувствительный ферромагнитного элемент, один или несколько постоянных магнитов, одну или несколько тепловых труб для нагрева и/или охлаждения одного или нескольких термоэлектрических преобразователей и/или термомагнитных преобразователей энергии.

Изобретение относится к теплоэнергетике и может быть использовано для комплексной утилизации тепла сбросных газов и жидкостей, а именно для утилизации тепла дымовых газов при нагревании воздуха с одновременным получением электричества. В пластинчатом термоэлектротеплобменнике, содержащем корпус, снабженный газовыми и воздушными патрубками, внутри которого помещен пакет, состоящий из перфорированных пластин, образующих между собой газовые и воздушные каналы, перфорация которых размещена в шахматном порядке и в нее помещены термоэлектрические преобразователи, соединенные в термоэлектрические секции и с общими коллекторами одноименных электрических зарядов, соединенных в свою очередь с клеммами, перфорация пластин выполнена в виде прямоугольных проемов, снабженных по горизонтальным торцам лепестковыми вихреобразователями и скобками, в каждом прямоугольном проеме помещены плоские термоэлектрические преобразователи, снабженные токовыводами и зажатые скобками, токовыводы параллельно соединены в каждом ряду с секционными коллекторами, образуя термоэлектрические секции, которые соединены параллельно с общими коллекторами одноименных электрических зарядов.

Изобретение относится к медицинской технике, а именно к термоэлектрическому устройству для лечения воспалительных заболеваний пародонта. Устройство содержит воздействующий элемент с термоэлектрической системой изменения температуры воздействия и питающий ее электрической энергией блок контроля и регулировки температуры.

Изобретение относится к медицинской технике, а именно к термоэлектрическому устройству для лечения воспалительных заболеваний пародонта. Устройство содержит воздействующий элемент с термоэлектрической системой изменения температуры воздействия и питающий ее электрической энергией блок контроля и регулировки температуры.

Изобретение относится к медицинской технике, а именно к термоэлектрическим устройствам для лечения воспалительных заболеваний пародонта. Устройство содержит воздействующий элемент с термоэлектрической системой изменения температуры воздействия и питающий ее электрической энергией блок контроля и регулировки температуры.

Изобретение относится к теплоэнергетике, а именно к системам теплоснабжения жилых, общественных и промышленных зданий. Электрогенерирующий отопительный прибор содержит две трубы верхнего и нижнего коллекторов, вертикальные трубы круглого сечения, связывающие полости верхнего и нижнего коллекторов по всей их длине, прижатые к фронтальной и тыльной поверхности вертикальных труб вертикальные термоэлектрические секции, каждая из которых состоит из вертикальной П–образной опорной рамки, выполненной из материала с высокой теплопроводностью, вертикальные торцы которой выполнены с двумя резьбовыми отверстиями, снабженной на продольных торцах вертикальными фланцами, концы которых выполнены с крепежными отверстиями, через которые пропущены стягивающие болты, на наружную поверхность каждой П–образной опорной рамки уложены n плоских элементов Пелтье.
Наверх