Электробаромембранный аппарат комбинированного типа

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации и может быть использовано, например, в химической, машиностроительной, пищевой промышленности, агропромышленном комплексе. Отличительной особенностью аппарата является то, что плоскокамерный модуль состоит из первой, третьей и пятой прианодных камер разделения и второй, четвертой и последней прикатодных камер разделения с равной площадью прианодных и прикатодных мембран. Между трубками трубчатого модуля от камер для прианодного и прикатодного пермеата первой ступени до камер вывода ретентата второй ступени расположены 3-контурные модули охлаждения типа «труба в трубе» с переточными отверстиями, переточными каналами, штуцерами ввода и вывода охлаждающей воды. Техническим результатом является обеспечение повышения площади разделения раствора на единицу объема плоскокамерного модуля аппарата, повышения качества и эффективности разделения растворов, охлаждения пермеата второй ступени. 10 ил.

 

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации и может быть использовано в химической, машиностроительной, пищевой промышленности, агропромышленном комплексе и т.п.

Аналогом данной конструкции является плоскокамерный мембранный аппарат, приведенный в работе Дытнерского Ю.И. «Процессы и аппараты химической технологии. Часть 2», М.: Химия, 1995, стр. 347-348, представляющий собой набор эллиптических мембранных элементов, находящихся между круглыми фланцами, и трубчатый мембранный модуль для фильтрации жидкости, конструкция которого приведена в патенте RU 2156645 С1, 27.09.2000. Недостатками аналога являются: низкое качество и эффективность разделения растворов, невозможность дифференцированного выделения ионов в потоках прикатодного и прианодного пермеата на промежуточной ступени разделения. Частично недостатки устранены в прототипе.

Прототипом данной конструкции является электробаромембранный аппарат комбинированного типа, конструкция которого приведена в патенте RU 2712599 C1, 29.01.2020. Бюл. № 4. Прототип состоит из двух крышек, имеющих штуцер ввода разделяемого раствора, штуцеров вывода ретентата первой и второй ступени, штуцеров вывода пермеата второй ступени и подачи воздуха, камер для прианодного и прикатодного пермеата первой ступени, выступов для фиксации трубчатых модулей, трубок трубчатого модуля, корпуса плоскокамерного модуля, опорных колец, каналов для отвода прианодного и прикатодного пермеата, обратных клапанов, прианодной и прикатодной дренажных сеток, пористых подложек, прианодных и прикатодных мембран, поплавковых уровнемеров, прокладок, прокладок с каналом для отвода прианодного и прикатодного пермеата, герметизирующих заливок, байонетного кольца, клемм устройства для подвода электрического тока — анода и катода, выполненных в виде цилиндрических шпилек с резьбой, в которых имеются круглые сквозные прикатодные и прианодные проточки, проточных окон, диэлектрических перегородок, монополярных электродов, камер вывода ретентата второй ступени.

Недостатками прототипа являются: малая площадь разделения раствора на единицу объема аппарата, низкое качество и эффективность разделения растворов, отсутствие охлаждения.

Технический результат выражается повышением площади разделения раствора на единицу объема плоскокамерного модуля аппарата, повышением качества и эффективности разделения растворов, охлаждением пермеата второй ступени, за счет того, что аппарат состоит из двух крышек, имеющих штуцер ввода разделяемого раствора, штуцеров вывода ретентата первой и второй ступени, штуцеров вывода пермеата второй ступени и подачи воздуха, камер для прианодного и прикатодного пермеата первой ступени, выступов для фиксации трубчатых модулей, трубок трубчатого модуля, корпуса плоскокамерного модуля, опорных колец, каналов для отвода прианодного и прикатодного пермеата, обратных клапанов, прианодной и прикатодной дренажных сеток, пористых подложек, прианодных и прикатодных мембран, поплавковых уровнемеров, прокладок, прокладок с каналом для отвода прианодного и прикатодного пермеата, герметизирующих заливок, байонетного кольца, клемм устройства для подвода электрического тока - анода и катода, выполненных в виде цилиндрических шпилек с резьбой, в которых имеются круглые сквозные прикатодные и прианодные проточки, проточных окон, диэлектрических перегородок, монополярных электродов, камер вывода ретентата второй ступени, отличающийся тем, что плоскокамерный модуль состоит из первой, третьей и пятой прианодных камер разделения и второй, четвертой и последней прикатодных камер разделения с равной площадью прианодных и прикатодных мембран, между трубками трубчатого модуля от камер для прианодного и прикатодного пермеата первой ступени до камер вывода ретентата второй ступени расположены 3-контурные модули охлаждения типа «труба в трубе» с переточными отверстиями, переточными каналами, штуцерами ввода и вывода охлаждающей воды.

На фиг. 1 изображен основной вид электробаромембранного аппарата комбинированного типа; на фиг. 2 - вид сверху; на фиг. 3 - вид снизу; на фиг. 4 - горизонтальный разрез А-А на фиг. 1; на фиг. 5 - сложный разрез Б-Б на фиг. 4; на фиг. 6 - сложный разрез В-В на фиг. 4; на фиг. 7 - сложный разрез Г-Г на фиг. 4; на фиг. 8 - выносной элемент фиг. 5, схема миграции катионов и анионов в плоскокамерном модуле; на фиг. 9 - выносной элемент фиг. 7, схема циркуляции пермеата второй ступени; на фиг. 10 - выносной элемент фиг. 7, схема циркуляции охлаждающей воды.

Электробаромембранный аппарат комбинированного типа состоит из двух крышек 1 и 2, имеющих штуцер ввода разделяемого раствора 3, штуцеров вывода ретентата второй и первой ступени 4 и 5, штуцеров вывода пермеата второй ступени и подачи воздуха 6 и 7, камер для прианодного и прикатодного пермеата 8 и 9 первой ступени, выступов для фиксации трубчатых модулей 10 и 11, трубок трубчатого модуля 12, корпуса плоскокамерного модуля 13, опорных колец 14, каналов для отвода прианодного и прикатодного пермеата 15 и 16, обратных клапанов 17, прианодной и прикатодной дренажных сеток 18 и 32, пористых подложек 19, прианодных и прикатодных мембран 20 и 31, поплавковых уровнемеров 21, прокладок 22, прокладок с каналом для отвода прианодного и прикатодного пермеата 23 и 24, герметизирующих заливок 25, байонетного кольца 26, клемм устройства для подвода электрического тока — анода 27 и катода 28, выполненных в виде цилиндрических шпилек с резьбой, в которых имеются круглые сквозные прикатодные и прианодные проточки 35 и 36, проточных окон 29, диэлектрических перегородок 30, монополярных электродов 33 и 34, камер вывода ретентата второй ступени 37, штуцеров ввода и вывода охлаждающей воды 38 и 39, 3-контурных модулей охлаждения 40 типа «труба в трубе», переточных отверстий 41, переточных каналов 42.

Крышки 1, 2, штуцер ввода разделяемого раствора 3, штуцера вывода ретентата второй и первой ступени 4, 5, штуцера вывода пермеата второй ступени и подачи воздуха 6, 7, корпус плоскокамерного модуля 13, опорные кольца 14, байонетное кольцо 26, диэлектрические перегородки 30, 3-контурный модуль охлаждения 40 выполнены из диэлектрического материала капролон или полиамид-6.

Трубки трубчатого модуля 12 могут быть изготовлены из трубчатого ультрафильтра типа БТУ 05/2.

Прианодные и прикатодные дренажные сетки 18, 32 могут быть выполнены из материала Х18Н10Т, 20Х23Н18, 10Х17Н13М2Т, О8Х18Т1.

Пористые подложки 19 могут быть выполнены из листа ватмана.

Прианодные и прикатодные мембраны 20, 31 могут быть выполнены из полотна мембран ОПМН-П, ОПМН-К, ОПМ-К, МГА-95, МГА-100, УАМ-50, УАМ-100.

Прокладки 22 и прокладки с каналом для отвода прианодного и прикатодного пермеата 23, 24 могут быть выполнены из паронита.

Герметизирующие заливки 25 из герметизирующих эпоксидных смол.

Монополярные электроды 33, 34 могут быть изготовлены из 20-45 процентного пористого проката типа Х18Н15-ПМ, Х18Н15-МП, Н-МП, ЛНПИТ, ЛПН-ПМ.

Аппарат работает следующим образом.

Исходный раствор под трансмембранным давлением, превышающим осмотическое давление растворенных в нем веществ, через штуцер ввода разделяемого раствора 3, фиг. 1, 3, 5, 6, 7, расположенного на крышке 2, подается в первую камеру разделения плоскокамерного модуля, образованную нижней крышкой 2, прокладкой 22, опорным кольцом 14 и прианодной мембраной 20, далее переходит через проточные окна 29, фиг. 5, 6, 8, всего аппарата, попадая в последнюю камеру разделения плоскокамерного модуля, образованную верхней крышкой 1, прокладкой 22, опорным кольцом 14 и прикатодной мембраной 31 и выводится в виде ретентата через штуцер вывода ретентата первой ступени 5. Средние камеры разделения образованы межмембранными каналами, расположенными между прианодными и прикатодными мембранами 20 и 31, фиг. 5, 6, 7, при этом разделяемый раствор переходит из одного межмембранного канала в последующие через проточные окна 29 всего аппарата.

При заполнении камер разделения всего аппарата разделяемым раствором на клеммы устройства для подвода электрического тока - анод 27 и катод 28, выполненных в виде цилиндрических шпилек с резьбой, в которых имеются круглые сквозные прикатодные и прианодные проточки 35 и 36, подается внешнее напряжение, которое устанавливает заданную постоянную плотность тока в растворе.

Растворенные вещества в разделяемом растворе диссоциируют на анионы и катионы.

Под действием электрического тока из первой, третьей и пятой камер разделения, фиг. 5, 6, 7, анионы проникают через прианодную мембрану 20, пористую подложку 19 и по прианодной дренажной сетке 18 через прокладку с каналом для отвода прианодного пермеата 23, далее через круглые сквозные прианодные проточки 36 в цилиндрических шпильках с резьбой, выполняющих функцию клеммы устройства для подвода электрического тока - анода 27, в потоке прианодного пермеата по каналу для отвода прианодного пермеата 15 при открытом обратном клапане 17, заполняет камеру для прианодного пермеата 8 первой ступени, а катионы проникают через прикатодную мембрану 31, пористую подложку 19 и по прикатодной дренажной сетке 32 через прокладку с каналом для отвода прикатодного пермеата 24, далее через круглые сквозные прикатодные проточки 35 в цилиндрических шпильках с резьбой, выполняющих функцию клеммы устройства для подвода электрического тока - катода 28, в потоке прикатодного пермеата по каналу для отвода прикатодного пермеата 16 при открытом обратном клапане 17, заполняет камеру для прикатодного пермеата 9 первой ступени.

При заполнении камер для прианодного и прикатодного пермеата 8, 9 первой ступени, фиг. 4, 5, 6, подача разделяемого раствора через штуцер ввода разделяемого раствора 3 в аппарат прекращается и включаются компрессоры, нагнетающие давление в камеры для прианодного и прикатодного пермеата 8, 9 первой ступени. Обратные клапаны 17, установленные в аппарате препятствуют попаданию из камер для прианодного и прикатодного пермеата 8, 9 первой ступени обратно в каналы для отвода прианодного и прикатодного пермеата 15, 16. Уровень прианодного и прикатодного пермеата в камерах для прианодного и прикатодного пермеата 8, 9 первой ступени отслеживается посредством поплавковых уровнемеров 21.

Исходный раствор, поступающий по штуцеру ввода разделяемого раствора 3, фиг. 5, 6, 7, и проходящий по проточным окнам 29 всего аппарата переходит из первой, средних и последней камер разделения, очищается от анионов и катинов и выводится из аппарата через штуцер вывода ретентата первой ступени 5, фиг. 1, 2, 5, верхней крышки 1.

Под действием давления, нагнетаемого компрессорами через штуцеры подачи воздуха 7, из камер для прианодного и прикатодного пермеата 8, 9 первой ступени, фиг. 4, 5, 6, прианодный и прикатодный пермеат подается в трубки трубчатого модуля 12, где разделяется на ретентат второй ступени, попадающий в камеру вывода ретентата второй ступени 37, и через штуцеры 4 выводятся из аппарата, а пермеаты, образующиеся в результате проникновения через трубки трубчатого модуля 12, проходят через переточные отверстия 41 3-контурного модуля охлаждения 40 типа «труба в трубе», фиг. 9, и отводятся через штуцеры вывода пермеата второй ступени 6.

При опустошении камер для прианодного и прикатодного пермеата 8, 9 первой ступени компрессоры выключаются, подача воздуха через штуцера 7 прекращается. В это же время возобновляется подача исходного раствора через штуцер ввода разделяемого раствора 3 и процесс повторяется.

Одновременно с подачей разделяемого раствора через штуцеры ввода охлаждающей воды 38 подается охлаждающий агент, например, водопроводная вода, заполняя через переточные каналы 42 3-контурные модули охлаждения 40 типа «труба в трубе», фиг. 7, 9, 10, расположенные между трубками трубчатого модуля 12 от камер для прианодного и прикатодного пермеата 8 и 9 первой ступени до камер вывода ретентата второй ступени 37, фиг. 4, отводя избыток тепла от пермеата второй ступени, и выводится через штуцер вывода охлаждающей воды 39, фиг. 9.

Повышение площади разделения раствора на единицу объема плоскокамерного модуля аппарата, повышение качества и эффективности разделения растворов достигается за счет того, что плоскокамерный модуль состоит из первой, третьей и пятой прианодных камер разделения и второй, четвертой и последней прикатодных камер разделения с равной площадью прианодных и прикатодных мембран, фиг. 5, 6, 7, позволяющих поддерживать одинаковую плотность тока в камерах разделения.

Охлаждение пермеата второй ступени достигается за счет того, что между трубками трубчатого модуля от камер для прианодного и прикатодного пермеата первой ступени до камер вывода ретентата второй ступени, фиг. 4, расположены 3-контурные модули охлаждения типа «труба в трубе» с переточными отверстиями, переточными каналами, штуцерами ввода и вывода охлаждающей воды, фиг. 7, 9, 10.

Таким образом, разделение раствора происходит в две стадии: на первой стадии разделяемый раствор проходит через первую, средние и последнюю камеры разделения в электромембранном плоскокамерном модуле, а на второй – через два трубчатых мембранных модуля, что обеспечивает высокую степень очистки раствора.

Электробаромембранный аппарат комбинированного типа, состоящий из двух крышек, имеющих штуцер ввода разделяемого раствора, штуцеров вывода ретентата первой и второй ступени, штуцеров вывода пермеата второй ступени и подачи воздуха, камер для прианодного и прикатодного пермеата первой ступени, выступов для фиксации трубчатых модулей, трубок трубчатого модуля, корпуса плоскокамерного модуля, опорных колец, каналов для отвода прианодного и прикатодного пермеата, обратных клапанов, прианодной и прикатодной дренажных сеток, пористых подложек, прианодных и прикатодных мембран, поплавковых уровнемеров, прокладок, прокладок с каналом для отвода прианодного и прикатодного пермеата, герметизирующих заливок, байонетного кольца, клемм устройства для подвода электрического тока - анода и катода, выполненных в виде цилиндрических шпилек с резьбой, в которых имеются круглые сквозные прикатодные и прианодные проточки, проточных окон, диэлектрических перегородок, монополярных электродов, камер вывода ретентата второй ступени, отличающийся тем, что плоскокамерный модуль состоит из первой, третьей и пятой прианодных камер разделения и второй, четвертой и последней прикатодных камер разделения с равной площадью прианодных и прикатодных мембран, между трубками трубчатого модуля от камер для прианодного и прикатодного пермеата первой ступени до камер вывода ретентата второй ступени расположены 3-контурные модули охлаждения типа «труба в трубе» с переточными отверстиями, переточными каналами, штуцерами ввода и вывода охлаждающей воды.



 

Похожие патенты:

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации. Электробаромембранный аппарат комбинированного типа состоит из двух крышек, имеющих штуцеры ввода разделяемого раствора, вывода ретентата, отвода пермеата и подачи воздуха для нагнетания давления в камеру для пермеата первой ступени, корпуса плоскокамерного модуля, опорных колец, канала для отвода пермеата от плоских мембранных элементов, обратного клапана, дренажной сетки, пористой подложки, мембран, поплавкового уровнемера, трубчатого мембранного модуля, прокладок, герметизирующих заливок, байонетного кольца, отличающийся тем, что трубчатый мембранный модуль второй ступени состоит из чередующихся прикатодных и прианодных мембран, трубчатых пористых подложек, прикатодных и прианодных дренажных сеток, соединенных с пластинами электрод-катодом и электрод-анодом, контактирующих с клеммами для подвода постоянного электрического тока - катодом и анодом, выполненных в виде цилиндрических шпилек, прикатодных и прианодных камер для пермеата второй ступени, разделенных диэлектрической перегородкой, штуцеров для отвода прикатодного, прианодного пермеата второй ступени, уплотнителя трубчатого мембранного модуля, заглушки, манжеты.

Изобретение относится к системам очистки жидкости с применением фильтрующих мембран, предназначенным для очистки или обессоливания жидкости, преимущественно воды, из различных источников, в том числе питьевой воды, технологических растворов, сточных вод, напитков и других жидкостей в бытовых или промышленных условиях, на дачных и садовых участках.

Изобретение имеет отношение к подавляющему адгезию биологического компонента материалу и очистителю крови, содержащему такой материал. Представленный материал содержит подложку, которая имеет функциональный слой с полимером, иммобилизованным на поверхности, который находится в контакте с биологическим компонентом.

Изобретение относится к способу для фильтрации содержащей белок жидкости. Способ фильтрации жидкости, содержащей белок в концентрации от 20 мг/мл до 100 мг/мл, включающий: стадию предварительной фильтрации содержащей белок жидкости с помощью предварительного фильтра, имеющего размер пор 0,08 мкм – 0,25 мкм и содержащего гидрофобную смолу, и стадию удаления вирусов после стадии предварительной фильтрации путем фильтрования содержащей белок жидкости мембраной для удаления вирусов, содержащей синтетический полимер, причем содержащая белок жидкость до выполнения стадии предварительной фильтрации содержит 0,25 г или больше тримера или мультимера белков, имеющего средний диаметр меньше чем 100 нм на 1 м2 мембраны для удаления вирусов.

Изобретение относится к водородной энергетике, в частности к мембранным технологиям получения особо чистого водорода из газовых смесей, содержащих водород. При этом для получения особо чистого водорода предпочтительно используют тонкие плоские мембраны из палладия и его сплавов, скрепленные с конструктивными деталями мембранного элемента с помощью пайки или сварки.

Изобретение относится к выпускному элементу с фильтром для прокапывания фиксированного количества фильтрата при фильтровании суспензий и может быть использовано при генетических исследованиях во многих областях, включая диагностику инфекционных заболеваний. Выпускной элемент 4 снабжен фильтром F, который делает возможным прокапывание фильтрата в капельный контейнер, при котором отсос избыточной части осуществляется без ухудшения рабочих характеристик прокапывания и рабочих характеристик фильтрования в случае, когда фильтрат прокапывается в капельный контейнер при фильтровании суспензии, содержащей мелкодисперсные частицы, такие как адсорбент, и избыточная часть должна отсасываться, когда накапанное количество является избыточным, чтобы при этом дать возможность для инжектирования фиксированного количества фильтрата в капельный контейнер.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электроосмофильтрации и может быть использовано в химической, текстильной, микробиологической, медицинской, пищевой и других областях промышленности. Электробаромембранный аппарат комбинированного типа включает две крышки, имеющие штуцеры для ввода разделяемого раствора, отвода пермеата первой ступени, отвода ретентата первой ступени и отвода ретентата второй ступени, два трубчатых мембранных модуля, выступы для фиксации трубчатых модулей, корпус плоскомембранного модуля, имеющий впадину для установки опорных колец, обратный клапан, пористую подложку, поплавковый уровнемер, герметизирующие заливки, байонетное кольцо.

Изобретение относится к сшитой термически перестроенной полимерной мембране для разделения газов и способу ее получения. Сшитая термически перестроенная полимерная мембрана, полученная согласно изобретению, содержит атомы фтора, распределенные в ней с обеспечением градиента концентрации от поверхности.

Изобретение относится к системам и способам для разделения несмешиваемых жидкостей. Предложен способ, включающий: обеспечение наличия устройства для разделения фаз, включающего пористую мембрану, имеющую фильтрующую поверхность, где фильтрующая поверхность имеет неплоскую конфигурацию, которая образует приемную полость; помещение смеси жидкостей в приемную полость пористой мембраны, где смесь жидкостей включает полярную жидкость и неполярную жидкость, несмешиваемые друг с другом; при этом фильтрующая поверхность, расположенная вдоль приемной полости, выполнена так, что она препятствует течению полярной жидкости через фильтрующую поверхность и не препятствует течению неполярной жидкости внутрь пористой мембраны; и обеспечение возможности течения неполярной жидкости внутрь пористой мембраны; при этом полярная жидкость образует каплю внутри приемной полости, тогда как неполярная жидкость протекает внутрь пористой мембраны.

Изобретение относится к установкам для разделения и концентрирования жидких сред и может найти применение при изготовлении устройств с использованием полупроницаемых мембран для удаления механических, коллоидных и растворенных включений размером 0,1 мкм и выше, в том числе для химической, биотехнической промышленности, а также в системах водоочистки, фармацевтике.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации. Электробаромембранный аппарат комбинированного типа состоит из двух крышек, имеющих штуцеры ввода разделяемого раствора, вывода ретентата, отвода пермеата и подачи воздуха для нагнетания давления в камеру для пермеата первой ступени, корпуса плоскокамерного модуля, опорных колец, канала для отвода пермеата от плоских мембранных элементов, обратного клапана, дренажной сетки, пористой подложки, мембран, поплавкового уровнемера, трубчатого мембранного модуля, прокладок, герметизирующих заливок, байонетного кольца, отличающийся тем, что трубчатый мембранный модуль второй ступени состоит из чередующихся прикатодных и прианодных мембран, трубчатых пористых подложек, прикатодных и прианодных дренажных сеток, соединенных с пластинами электрод-катодом и электрод-анодом, контактирующих с клеммами для подвода постоянного электрического тока - катодом и анодом, выполненных в виде цилиндрических шпилек, прикатодных и прианодных камер для пермеата второй ступени, разделенных диэлектрической перегородкой, штуцеров для отвода прикатодного, прианодного пермеата второй ступени, уплотнителя трубчатого мембранного модуля, заглушки, манжеты.
Наверх