Устройство для контроля трубопровода с использованием электромагнитно-акустической технологии




Владельцы патента RU 2790942:

Общество с ограниченной ответственностью "Транснефть - Дальний Восток" (ООО "Транснефть - Дальний Восток") (RU)
Акционерное общество "Транснефть - Сибирь" (АО "Транснефть - Сибирь") (RU)
Акционерное общество "Транснефть - Верхняя Волга" (АО "Транснефть - Верхняя Волга") (RU)
Общество с ограниченной ответственностью "Транснефть - Балтика" (ООО "Транснефть - Балтика") (RU)
Акционерное общество "Транснефть - Западная Сибирь" (АО "Транснефть - Западная Сибирь") (RU)
Общество с ограниченной ответственностью "Транснефть - Восток" (ООО "Транснефть - Восток") (RU)
Публичное акционерное общество "Транснефть" (ПАО "Транснефть") (RU)
Акционерное общество "Черноморские магистральные нефтепроводы" (АО "Черномортранснефть") (RU)
Акционерное общество "Транснефть - Север" (АО "Транснефть - Север") (RU)
Акционерное общество "Транснефть - Диаскан" (АО "Транснефть - Диаскан") (RU)
Акционерное общество "Транснефть - Урал" (АО "Транснефть - Урал") (RU)
Акционерное общество "Транснефть - Дружба" (АО "Транснефть - Дружба") (RU)
Акционерное общество "Транснефть - Приволга" (АО "Транснефть - Приволга") (RU)
Акционерное общество "Транснефть - Прикамье" (АО "Транснефть - Прикамье") (RU)

Использование: для неразрушающего контроля технического состояния нефтегазопроводов и нефтепродуктопроводов ультразвуковым методом с использованием электромагнитно-акустических преобразователей (ЭМАП). Сущность изобретения заключается в том, что устройство содержит магнитную систему, по меньшей мере один излучающий ЭМАП с катушкой, выполненной в виде меандра, по меньшей мере два ЭМАП, работающих только на прием и расположенных на расстоянии от излучающего ЭМАП. Излучающий ЭМАП формирует ультразвуковые волны в пределах контролируемой области поверхности стенки трубопровода, намагниченной в заданном направлении магнитной индукции. Магнитная система выполнена с возможностью тангенциального или нормального намагничивания стенки трубопровода. ЭМАП, работающие только на прием, смещены относительно оси, направленной вдоль распространения ультразвуковых волн и проходящей через середину катушки излучающего ЭМАП. ЭМАП, работающие только на прием, расположены под углом от 10° до 60° к излучающему ЭМАП при тангенциальном намагничивании стенки трубопровода и от 10° до 170° при нормальном намагничивании стенки трубопровода. Излучающий ЭМАП размещен так, чтобы проводники большей стенки катушки меандра были перпендикулярны направлению вектора намагничивания стенки трубопровода. Технический результат: обеспечение повышения качества ультразвукового контроля трубопровода без дополнительного увеличения энергозатрат. 6 з.п. ф-лы, 6 ил.

 

Изобретение относится к области неразрушающего контроля технического состояния нефтегазопроводов и нефтепродуктопроводов ультразвуковым методом с использованием электромагнитно-акустических преобразователей (ЭМАП) и может быть использовано в дефектоскопах различных конструкций, работа которых основана на технологиях, использующих прямое и обратное электромагнитно-акустическое преобразование.

Как правило, известные устройства для контроля трубопроводов ультразвуковым методом с использованием электромагнитно-акустических преобразователей содержат схему расположения ЭМАП, в которой ЭМАП формируют и принимают ультразвуковые волны, распространяющиеся под углом к поверхности исследуемого тела, а также поверхностные или нормальные (резонансные) ультразвуковые волны, при этом:

- эти ЭМАП работают каждый на излучение и прием;

- эти ЭМАП работают попарно, один работает только на излучение, а другой только на прием.

Недостатком таких устройств является то, что при использовании таких схем расположения ЭМАП можно детектировать трещиноподобные дефекты, расположенные под маленькими углами по отношению к направлению, перпендикулярному распространению ультразвуковой волны. Величина этого угла может быть от -10° до 10°.

Ниже описан принцип работы данных устройств, лежащий в основе известных способов неразрушающего контроля трубопроводов с использованием ЭМАП.

С помощью ЭМАП в стенке трубы, намагниченной в заданном направлении магнитной индукции, образуется ультразвуковая волна. Эта волна может быть направленной под углом к поверхности. Также это может быть нормальная или поверхностная волна. Такие волны можно сформировать, например, с помощью ЭМАП с индуктором в виде меандра. Тип и параметры волн, направленных под углом к поверхности, а также поверхностных волн, определяется соотношением геометрических параметров индуктора и частоты подаваемого электрического сигнала на излучающий ЭМАП. Тип и параметры нормальных волн определяются соотношением геометрических параметров индуктора, частоты подаваемого электрического сигнала на излучающий ЭМАП и толщины стенки трубы. На тип и параметры волн, излучаемых ЭМАП, также влияют параметры магнитного поля, вводимого в стенку трубы. ЭМАП такого типа излучает ультразвуковую волну, распространяющуюся в определенном направлении по телу трубы.

В случае наличия дефекта типа «трещина» ультразвуковая волна отражается от него и попадает в приемный ЭМАП (эхо-метод).

В связи с тем, что ультразвуковая волна отражается в соответствии с законами геометрической оптики, т.е. угол падения равен углу отражения, при ориентации дефекта, расположенного под достаточно большим углом к направлению, перпендикулярному направлению распространения ультразвуковой волны, отраженная от дефекта ультразвуковая волна может не попасть в приемный индуктор, а, следовательно, не будет зарегистрирована.

Дефектоскопы, использующие способ контроля, аналогичный вышеописанному, не способны видеть трещиноподобные дефекты, расположенные под достаточно большими углами относительно направления, перпендикулярного направлению распространения ультразвуковой волны (превышающие по модулю 10°). При этом введение дополнительных датчиков, работающих на излучение, формирующих ультразвуковую волну, направленную под другими углами, приведет к значительному увеличению расхода энергии, что является проблемой для дефектоскопии. Таким образом часть трещиноподобных дефектов может быть не выявлена, для их выявления потребуются дополнительные методы контроля. Для увеличения количества обнаружения трещиноподобных дефектов встает вопрос об увеличении углов расположения дефектов, при которых возможно их детектирование.

Известна система ультразвуковой дефектоскопии трубопровода [см. патент на полезную модель № RU 102810 от 10.03.2011], в которой два двунаправленных ЭМАП размещены симметрично по обе стороны от образующей трубопровода в зоне от 3-х до 9-ти часов и перемещаются вдоль трубопровода. Они излучают ультразвуковые волны, направленные по окружности и регистрируют их. Определение положения дефекта на окружности происходит при обработке сигналов, полученных при регистрации ультразвуковой волны, отраженной от дефектов, тем ЭМАП, который ее же и сгенерировал, и волны, отраженной от дефекта, сгенерированной другим ЭМАП.

Недостатком данной системы является то, что при ее использовании возможно выявить только дефекты, расположенные под небольшими углами относительно образующей трубы. Кроме того, данная схема прозвучивания, очевидно, предполагает, что диагностика ведется нормальными или поверхностными волнами. В случае, если диагностика ведется нормальными (резонансными) волнами, например, волнами Лэмба, будут присутствовать ограничения, связанные с толщиной стенки трубы, в особенности возможные ее изменения в процессе диагностики. В случае, если диагностика ведется поверхностными волнами, например, волнами Релея, то выявлены будут только дефекты, выходящие на одну поверхность трубы.

Известна система ультразвуковой дефектоскопии трубопровода [см. патент на полезную модель № RU 108627 от 20.09.2011], в которой двунаправленный датчик ЭМАП излучает рэлеевские ультразвуковые волны по окружности трубопровода. Дефект обнаруживается эхо-методом, регистрируется отраженная от дефекта ультразвуковая волна этим же ЭМАП.

Недостатком данной системы является то, что при ее осуществлении возможно выявить только дефекты, расположенные под небольшими углами относительно образующей трубы. Кроме того, так как диагностика ведется поверхностными волнами Релея, выявлены будут только дефекты, выходящие на одну поверхность трубы. Также к недостаткам этого метода можно отнести то, что данная система не обеспечивает точное определение местоположения дефекта по окружности трубопровода, а способна определить лишь дефектное сечение.

Совокупность признаков, наиболее близкая к совокупности существенных признаков заявляемого изобретения, присуща известному устройству для неразрушающего контроля стенок ферромагнитных конструктивных элементов [см. патент на изобретение № RU 2413214 от 27.02.2011 г.].

В данном устройстве, принятом за прототип, ультразвуковые волны (прежде всего нормальные сдвиговые волны) возбуждаются высокочастотной индуктивной катушкой на участке стенки, намагниченном в заданном направлении магнитной индукции, распространяются по траектории, задаваемой ориентацией индуктивной катушки, являющейся передатчиком-преобразователем и принимаемых расположенной на расстоянии от передатчика-преобразователя по меньшей мере одной индуктивной катушкой, являющейся приемником-преобразователем, причем направление траектории распространения ультразвуковых волн ориентировано под острым углом к направлению магнитной индукции. Величина этого угла может быть от 10 до 60°, причем приемник-преобразователь размещен сбоку от первоначальной траектории распространения сгенерированной ультразвуковой волны и направлен на расположенный на ней заданный контролируемый участок.

Прототип обладает следующими недостатками.

Во-первых, ориентация магнитного поля и передающего индуктора ЭМАП выполнена таким образом, что между направлением магнитного поля и направлением распространения ультразвуковой волны существует некоторый угол, отличный от 0°, что приводит к увеличению энергозартат для получения требуемой амплитуды ультразвуковой волны в результате прямого электромагнитно-акустического преобразования.

Во-вторых, присутствует ограничение диагностики трубопроводов, связанное с их толщиной, и прежде всего с возможным изменением толщины стенки трубы в процессе диагностики трубопровода. Это связано с механизмом образования нормальных волн. Различные моды нормальных волн формируются только при определенном сочетании толщины стенки трубы и частоты формируемого сигнала. Если толщина стенки трубы меняется, условия формирования изначально используемых мод нормальных волн меняются, а, следовательно, возникают существенные трудности для их генерации.

В-третьих, прототип применим только с использованием магнитных систем, образующих тангенциально направленное магнитное поле (вектор магнитной индукции направлен преимущественно в направлении образующей или направляющей стенке трубы) и не возможен при использовании магнитных систем, создающих нормальное магнитное поле (вектор магнитной индукции направлен преимущественно перпендикулярно стенке трубы). Таким образом, используемый метод диагностики не является универсальным. Иногда удобнее использовать магнитные системы для нормального ввода, как правило, их конструкция является более компактной и легкой, например, это может быть использовано в ручных дефектоскопах.

В-четвертых, способ контроля с использованием прототипа, а также факт того, что излучающий ультразвуковую волну преобразователь работает только на излучение, позволяет детектировать дефекты только определенной ориентации, при этом не допускается большой разброс углов относительно этого направления.

Описанные недостатки устраняются заявляемым изобретением.

Технической проблемой, на решение которой направлено заявленное изобретение является создание устройства, позволяющего детектировать трещиноподобные дефекты, расположенные в большом диапазоне углов относительно направления, перпендикулярного направлению распространения ультразвуковой волны.

Технический результат изобретения заключается в повышении качества ультразвукового контроля трубопровода без дополнительного увеличения энергозатрат. Данный результат достигается за счет обеспечения возможности детектирования трещиноподобных дефектов, расположенных в большом диапазоне углов относительно направления, перпендикулярного направлению распространения ультразвуковой волны, без введения дополнительных ЭМАП, работающих на излучение, а значит без дополнительного увеличения энергозатрат.

Указанный технический результат достигается в предлагаемом устройстве для неразрушающего контроля стенок трубопровода, содержащем магнитную систему, по меньшей мере один излучающий ЭМАП с катушкой, выполненной в виде меандра, формирующий ультразвуковые волны в пределах контролируемой области поверхности стенки трубопровода, намагниченной в заданном направлении магнитной индукции, по меньшей мере два ЭМАП, работающих только на прием и расположенных на расстоянии от излучающего ЭМАП, при этом магнитная система выполнена с возможностью тангенциального или нормального намагничивания стенки трубопровода, а ЭМАП, работающие только на прием, смещены относительно оси, направленной вдоль распространения ультразвуковых волн и проходящей через середину катушки излучающего ЭМАП, и расположены под углом от 10° до 60° к излучающему ЭМАП при тангенциальном намагничивании стенки трубопровода и от 10° до 170° при нормальном намагничивании стенки трубопровода, при этом излучающий ЭМАП размещен так, чтобы проводники больших сторон катушки излучающего ЭМАП были перпендикулярны направлению вектора намагничивания стенки трубопровода.

Сущность заявленного изобретения поясняется чертежами.

На фиг. 1 приведен пример конструкции устройства для неразрушающего контроля стенок трубопровода, осуществляющего диагностику трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, при этом дефекты расположены преимущественно в направлении продольной оси трубы. В данном примере устройство для неразрушающего контроля содержит двунаправленный ЭМАП и четыре ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы тангенциальное магнитное поле.

На фиг. 2 приведен пример конструкции устройства для неразрушающего контроля стенок трубопровода, осуществляющего диагностику трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, расположенных преимущественно в направлении, перпендикулярном продольной оси трубы. В данном примере устройство для неразрушающего контроля содержит двунаправленный ЭМАП и четыре ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы тангенциальное магнитное поле.

На фиг. 3 приведен пример конструкции устройства для неразрушающего контроля стенок трубопровода, осуществляющего диагностику трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны. В данном примере устройство для неразрушающего контроля содержит двунаправленный ЭМАП и четыре ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы нормальное магнитное поле.

На фиг. 4 приведен пример конструкции устройства для неразрушающего контроля стенок трубопровода, осуществляющего диагностику трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, расположенных преимущественно в направлении продольной оси трубы. В данном примере устройство для неразрушающего контроля содержит однонаправленный ЭМАП и два ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы тангенциальное магнитное поле.

На фиг. 5 приведен пример конструкции устройства для неразрушающего контроля стенок трубопровода, осуществляющего диагностику трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны, расположенных преимущественно в направлении, перпендикулярном продольной оси трубы. В данном примере устройство для неразрушающего контроля содержит однонаправленный ЭМАП и два ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы тангенциальное магнитное поле.

На фиг. 6 приведен пример конструкции устройства для неразрушающего контроля стенок трубопровода, осуществляющего диагностику трещиноподобных дефектов, расположенных под большими углами по отношению к направлению, перпендикулярному направлению распространения ультразвуковой волны. В данном примере устройство для неразрушающего контроля содержит однонаправленный ЭМАП и два ЭМАП, работающих только на прием, с использованием магнитной системы, создающей в стенке трубы нормальное магнитное поле.

На чертежах приняты следующие обозначения:

1 - ЭМАП, излучающий ультразвуковые волны;

2 - ЭМАП, работающие только на прием ультразвуковых волн;

3 - трещиноподобный дефект;

4 - направление распространения излучаемой ультразвуковой волны;

5 - направление распространения отраженной от дефекта ультразвуковой волны;

6 - продольная ось трубы;

В - направление намагничивания стенки трубы.

Заявленное устройство (фиг. 1-6) содержит магнитную систему, ЭМАП 1 с катушками типа меандр, работающий как на излучение, так и на прием и излучение, при этом приемная и излучающая катушки закреплены в ЭМАП 1 в параллельных плоскостях так, что их акустические оси совпадают. Также устройство содержит по меньшей мере два ЭМАП 2, работающих только на прием ультразвуковых волн, расположенных на расстоянии от ЭМАП 1 и под углом к нему, смещенных относительно оси, направленной вдоль распространения ультразвуковых волн и проходящей через середину катушки излучающего ЭМАП.

Устройство работает следующим образом. На катушку ЭМАП 1 подается электрический сигнал необходимой длительности с частотой, требуемой для формирования в стенке трубы нужной ультразвуковой волны. Сформированная в стенке трубы ультразвуковая волна распространяется в две противоположные стороны или в одну сторону в направлениях 4, задаваемых акустической осью (прямой перпендикулярной к большей стороне витков меандра индуктора и проходящей через его середину) ЭМАП 1, работающего на излучение или излучение и прием. Отраженная от трещиноподобного дефекта 3 ультразвуковая волна 5 попадает, в зависимости от его расположения и угла между направлением, перпендикулярном акустической оси излучающего ЭМАП 1 и трещиноподобным дефектом, в один из ЭМАП 2, работающих только на прием или в ЭМАП 1, работающий на излучение и прием, где преобразуется в электрический сигнал, который затем направляется для дальнейшей обработки.

По намагниченной тангенциально (вектор магнитной индукции направлен преимущественно в направлении образующей или направляющей стенки трубы) или нормально (вектор магнитной индукции направлен преимущественно перпендикулярно стенке трубы) стенки трубы по ее наружной поверхности или по ее внутренней поверхности перемещают ЭМАП, формирующий направленную под углом к поверхности или нормальную, или поверхностную волну. Этот излучающий ЭМАП также может быть и приемником (ЭМАП совмещенного типа). При этом магнитная система может быть образована с использованием постоянных магнитов или электромагнитов и перемещаться вместе с перемещением ЭМАП. Причем ЭМАП, формирующий ультразвуковую волну, размещают так, чтобы проводники большей стороны катушки излучающего ЭМАП были направлены перпендикулярно направлению вектора намагничивания стенки трубопровода (между направлением магнитного поля в стенке трубы и направлением распространения ультразвуковой волны угол 0°), что способствует увеличению коэффициента прямого электромагнитно-акустического преобразования, следовательно, позволяет получить ультразвуковую волну с требуемой амплитудой с меньшими энергозатратами.

Одновременно с ЭМАП, излучающим ультразвуковую волну (или излучающим и принимающую ультразвуковую волну) перемещают два и более ЭМАП, которые работают только на прием ультразвуковой волны, которые должны быть расположены под некоторыми углами к излучающему и смещенные относительно оси, направленной вдоль распространения ультразвуковой волны и проходящей через середину катушки ЭМАП, ее излучающего (акустической оси излучающего ЭМАП). Значение диапазона этих углов для диагностики с использованием тангенциального магнитного поля составляет от 10 до 60°, для диагностики с использованием нормального магнитного поля - от 10 до 170°.

При ориентации ЭМАП, работающих только на прием, под углом больше 60° при использовании тангенциального магнитного поля будет слишком низкий коэффициент обратного электромагнитно-акустического преобразования. При ориентации ЭМАП, работающих только на прием, под углом менее 10° и под углом больше 170° при использовании нормального магнитного поля не имеет смысла, поскольку принимающий ЭМАП детектирует дефекты, расположенные в диапазоне углов не менее ±10 градусов от направления параллельного большей стороне витков меандра принимающей катушки (направления, перпендикулярного направлению акустической оси принимающего ЭМАП).

Минимальное число ЭМАП, работающих только на прием, которые требуется установить к излучающему двунаправленному ЭМАП (излучающему ультразвуковую волну в двух противоположных направлениях), равно четырем. Это связано с тем, что дефекты могут быть обнаружены одновременно с использованием ультразвуковых волн, генерируемых двунаправленным ЭМАП в противоположных направлениях, и для каждого из этих направлений дефекты, расположенные под положительными углами относительно направления, перпендикулярного направлению распространения излучаемой ультразвуковой волны и дефекты, расположенные под отрицательными углами относительно направления, перпендикулярного направлению распространения излучаемой ультразвуковой волны, детектируются двумя, по-разному расположенными ЭМАП, работающими только на прием (фиг. 1-3).

Минимальное число ЭМАП, работающих только на прием, которое требуется установить к излучающему однонаправленному ЭМАП (излучающего ультразвуковую волну в одном направлении), равно двум. Это связано с тем, что дефекты, расположенные под положительными углами относительно направления, перпендикулярного направлению распространения ультразвуковой волны и дефекты, расположенные под отрицательными углами относительно направления, перпендикулярного направлению распространения ультразвуковой волны, детектируются двумя, по-разному расположенными ЭМАП, работающими только на прием (фиг. 4-6).

Параметры используемых для диагностики ЭМАП должны быть выбраны исходя из типа и параметров волны, с помощью которой производится диагностика с учетом особенностей формирования этой волны в магнитном поле в стенке трубы (тангенциальном или нормальном).

1. Устройство для неразрушающего контроля стенок трубопровода, содержащее магнитную систему, по меньшей мере один излучающий электромагнитно-акустический преобразователь (ЭМАП) с катушкой, выполненной в виде меандра, формирующий ультразвуковые волны в пределах контролируемой области поверхности стенки трубопровода, намагниченной в заданном направлении магнитной индукции, по меньшей мере два ЭМАП, работающих только на прием и расположенных на расстоянии от излучающего ЭМАП, отличающееся тем, что магнитная система выполнена с возможностью тангенциального или нормального намагничивания стенки трубопровода, а ЭМАП, работающие только на прием, смещены относительно оси, направленной вдоль распространения ультразвуковых волн и проходящей через середину катушки излучающего ЭМАП, и расположены под углом от 10° до 60° к излучающему ЭМАП при тангенциальном намагничивании стенки трубопровода и от 10° до 170° при нормальном намагничивании стенки трубопровода, при этом излучающий ЭМАП размещен так, чтобы проводники большей стороны катушки излучающего ЭМАП были перпендикулярны направлению вектора намагничивания стенки трубопровода.

2. Устройство для неразрушающего контроля стенок трубопровода по п. 1, отличающееся тем, что магнитная система выполнена с использованием постоянных магнитов или электромагнитов.

3. Устройство для неразрушающего контроля стенок трубопровода по п. 1, отличающееся тем, что ЭМАП излучает ультразвуковые волны, направленные под углом к поверхности или нормальные, или поверхностные.

4. Устройство для неразрушающего контроля стенок трубопровода по п. 1, отличающееся тем, что излучающий ЭМАП выполнен с дополнительной возможностью приема ультразвуковых волн.

5. Устройство для неразрушающего контроля стенок трубопровода по п. 1, отличающееся тем, что излучающий ЭМАП выполнен однонаправленным или двунаправленным.

6. Устройство для неразрушающего контроля стенок трубопровода по п. 5, отличающееся тем, что при выполнении излучающего ЭМАП однонаправленным, устройство содержит по меньшей мере два ЭМАП, работающих только на прием ультразвуковых волн.

7. Устройство для неразрушающего контроля стенок трубопровода по п. 5, отличающееся тем, что при выполнении излучающего ЭМАП двунаправленным, устройство содержит по меньшей мере четыре ЭМАП, работающих только на прием ультразвуковых волн.



 

Похожие патенты:

Изобретение относится к горной промышленности и предназначено для контроля сцепления анкерной крепи с массивом горных пород. Способ включает импульсное возбуждение вибраций в анкерной крепи, связующей массе и массиве горных пород посредством источника тестового сигнала, цифровую регистрацию последовательности временных отсчетов сигнала вибрационного отклика анкерной крепи на импульсный тестовый сигнал, преобразование временных отсчетов в цифровой спектр и его спектральный анализ.

Изобретение относится к горной промышленности и предназначено для контроля сцепления анкерной крепи с массивом горных пород. Способ включает импульсное возбуждение вибраций в анкерной крепи, связующей массе и массиве горных пород посредством источника тестового сигнала, цифровую регистрацию последовательности временных отсчетов сигнала вибрационного отклика анкерной крепи на импульсный тестовый сигнал, преобразование временных отсчетов в цифровой спектр и его спектральный анализ.

Использование: для измерения толщины стенки труб из ферромагнитных сплавов. Сущность изобретения заключается в том, что размещают с возможностью движения над поверхностью трубы по меньшей мере два датчика, конструктивно находящиеся в одном корпусе, один из которых - ультразвуковой, выполненный в виде электромагнитно-акустического преобразователя и подключенный к генератору формирования импульсного тока и блоку обработки ультразвуковых сигналов, второй - магнитоиндукционный, выполненный в виде датчика Холла и подключенный к блоку обработки магнитоиндукционных сигналов, осуществляют сканирование поверхности трубы датчиками по спиралевидной траектории при линейном перемещении и вращении трубы вокруг своей оси в условиях общего приложенного постоянного магнитного поля, генерируемого источником магнитного поля, при этом производят измерения толщины стенки трубы в одной и той же точке измерения магнитоиндукционным и ультразвуковым датчиками, сигналы акустических волн, полученные ультразвуковым датчиком, передают в блок обработки ультразвуковых сигналов, а сигналы от магнитных полей, полученные магнитоиндукционным датчиком, передают в блок обработки магнитоиндукционных сигналов, затем результаты обработки из блоков обработки ультразвукового и магнитоиндукционного сигналов передают в общий блок обработки результатов, выполненный с возможностью формирования результирующих измерений о толщине стенки трубы и осуществляющий постоянную калибровку результатов измерений магнитоиндукционным датчиком по результатам измерений ультразвуковым датчиком с учетом временного сдвига, вызванного разным временем прохождения каждой точки измерения ультразвуковым и магнитоиндукционным датчиками, результаты откалиброванных измерений выводят в виде диаграммы на устройство индикации, в случае отсутствия результатов измерений ультразвуковым датчиком на устройство индикации выводят результаты измерений магнитоиндукционным датчиком.

Использование: для ультразвукового контроля поверхности кварцевых керамических изделий на наличие царапин. Сущность изобретения заключается в том, что в контролируемом изделии излучают и принимают ультразвуковые волны.

Изобретение относится к области ультразвукового контроля заготовок на наличие внутренних дефектов. Способ включает воздействие на заготовку ультразвуковыми волнами, фиксацию ультразвуковых сигналов, возникших в результате воздействия на заготовку ультразвуковыми волнами, посредством по меньшей мере одного сенсора, формирование ультразвуковой томограммы заготовки на основании ультразвуковых сигналов и анализ упомянутой томограммы на предмет выявления внутренних дефектов заготовки.

Использование: для определения параметров поверхности катания головки рельса и глубины залегания продольных трещин. Сущность изобретения заключается в том, что устанавливают на поверхность катания и подголовочные поверхности головки рельса пары электроакустических преобразователей в виде линеек электроакустических преобразователей, сонаправленных друг на друга, линейки расположены поперек продольной оси рельса, количество пьезопластин в линейках выбирают из условия требуемого разрешения, зондируют головку рельса, для чего излучают ультразвуковые сигналы с подголовочных поверхностей и принимают на поверхности катания, измеряют время распространения ультразвуковых импульсов и вычисляют высоту головки рельса по линиям зондирования, при наличии продольно ориентированной трещины принимают эхо-сигналы от трещины и по времени распространения вычисляют глубину залегания дефекта, причем ввод и прием ультразвуковых колебаний производят через гибкие протекторы, адаптирующиеся к поверхностям головки рельса, измерения производят при неподвижных электроакустических преобразователях одновременно в нескольких плоскостях зондирования головки рельса, при вычислении контуров поверхности катания рельса и продольной трещины учитывают время задержки ультразвуковых сигналов в элементах линеек и в протекторах.

Использование: для формирования адаптивного порогового уровня обнаружения дефектов при ультразвуковом контроле протяженных изделий, в частности, железнодорожных рельсов и других изделий с плоскопараллельными поверхностями (металлопрокат, тавровые элементы и т.п.). Сущность изобретения заключается в том, что с помощью электроакустического преобразователя с заданным шагом излучают в изделие зондирующие ультразвуковые сигналы, принимают отраженные от противоположной поверхности изделия донные сигналы, оценивают их амплитуды, перемещают электроакустический преобразователь по поверхности изделия, формируют огибающую амплитуд донных сигналов, исходя из текущего значения амплитуд донных сигналов, корректируют пороговый уровень обнаружения дефектов, при этом формируют окно анализа, скользящее синхронно с перемещением электроакустического преобразователя, в указанном окне определяют распределение амплитуд донных сигналов, по полученному распределению определяют флуктуационный уровень амплитуд, ниже которого находится заданная доля сигналов с наиболее низкими амплитудами, с учетом донных сигналов, амплитуды которых выше флуктуационного уровня, определяют базовый уровень и относительно него устанавливают пороговый уровень обнаружения дефектов.

Использование: для неразрушающего контроля керамических изделий ультразвуковым методом. Сущность изобретения заключается в том, что контроль для определения формы дефекта выполняется блоком ультразвуковых преобразователей частотой 5-10 МГц и диаметром пьезоэлементов 10-20 мм ультразвуковыми волнами, излучаемыми и принимаемыми поочередно прямым ультразвуковым преобразователем и наклонными под углом 15° к корпусу блока ультразвуковыми преобразователями, реализующим способы контроля прямым и однократно отраженным лучами от внутренней стенки керамического изделия эхо- и зеркально-теневыми методами контроля, форма несплошности в материале стенки керамического изделия ультразвуковым методом контроля определяется при помощи блока ультразвуковых преобразователей по максимальной амплитуде отраженной от несплошности ультразвуковой волны и ее затенении, уменьшении амплитуды, при прохождении через несплошность, перемещая блок ультразвуковых преобразователей вдоль и вокруг поверхности контролируемого изделия, протяженность несплошности определяется по перемещению блока ультразвуковых преобразователей и амплитуде отраженной от несплошности ультразвуковой волны, затем вычисляется ее эквивалентная площадь, при этом угол наклона блока ультразвуковых преобразователей относительно оси контролируемого изделия в процессе контроля не изменяется.

Использование: для ультразвукового неразрушающего контроля. Сущность изобретения заключается в том, что ультразвуковой катящийся преобразователь для неразрушающего контроля содержащит П-образный корпус, полый цилиндрический пьезоэлемент, протектор, установленный с возможностью вращения вокруг собственной оси, скользящие токосъемники, установленные в корпусе, при этом корпус, выполненный из стали, является разъемным в плоскости, проходящей через плоскость вращения пьезоэлемента, и состоит из двух частей, которые изолированы между собой посредством электроизолирующей прокладки, при этом в одной из частей корпуса установлен разъем с проводами, соединяющимися с каждой из частей корпуса для электрического снабжения токосъемников из сплава на основе меди, установленных внутри соосных отверстий корпуса и электрически соединенных с пьезоэлементом, при этом между пьезоэлементом и протектором установлен и жестко присоединен к ним тонкостенный цилиндр из инструментальной углеродистой стали.

Использование: для проведения ультразвукового неразрушающего контроля методом ToFD. Сущность изобретения заключается в том, что система неразрушающего контроля методом ToFD согласно вариантам изобретения состоит из комбинаций излучателя и приемника, основанных на четырех вариантах конструкции пьезоэлемнта излучателя и двух вариантах конструкции пьезоэлемнта приемника.
Наверх