Устройство для измерения прочности бетона

Изобретение относится к области обследования технического состояния строительных конструкций. Устройство содержит ударник и пьезоэлектрический датчик, электроды которого подключены к входам фильтра высоких частот, выход которого соединен с входами измерителя частоты и измерителя коэффициента затухания, и снабжено пригрузом изменяемой массы, обмоткой соленоида и источником переменного электрического тока. Ударник размещен в обмотке соленоида, соединенной с источником переменного электрического тока. К пригрузу крепятся датчики-акселерометры, регистрирующие изменения ударного ускорения ударника и передающие данные на измерительный компьютер. Технический результат: повышение точности измерения прочности бетона. 2 ил.

 

Изобретение предназначено для определения прочности бетона методом неразрушающего контроля.

Известно устройство для измерения прочности бетона методом ударного импульса, содержащее ударное устройство и регистратор скорости распространения акустической волны (ГОСТ 22690. Бетоны. Определение прочности механическими методами неразрушающего контроля).

Наиболее близким из известных к заявленному является устройство для измерения прочности бетона, содержащее ударник и пьезоэлектрический датчик, электроды которого подключены к входам фильтра высоких частот, выход которого соединен с входами измерителя частоты и измерителя коэффициента затухания, снабженное пригрузом изменяемой массы, обмоткой соленоида и источником переменного электрического тока, при этом ударник размещен в обмотке соленоида, соединенной с источником переменного электрического тока (Авторское свидетельство SU 1783421 A1).

Общим недостатком известных устройств является низкая точность, обусловленная отсутствием системы контроля ударного ускорения, что не позволяет измерять деформацию образца бетона во время нанесения удара.

Техническая задача изобретения заключается в повышении точности измерения прочности бетона.

Данная техническая задача достигается тем, что устройство для измерения прочности бетона, содержащее ударник и пьезоэлектрический датчик, электроды которого подключены к входам фильтра высоких частот, выход которого соединен со входами измерителя частоты и измерителя коэффициента затухания, снабженное пригрузом изменяемой массы, обмоткой соленоида и источником переменного электрического тока, при этом ударник размещен в обмотке соленоида, соединенной с источником переменного электрического тока, снабжается датчиками-акселерометрами, регистрирующими изменения ударного ускорения ударника и передающими данные на измерительный компьютер.

Сущность изобретения и возможность достижения указанного технического результата поясняется в описании со ссылками на позиции чертежей, где на фиг.1 представлена блок-схема устройства в фронтальной плоскости, на фиг.2 представлена блок-схема устройства в горизонтальной плоскости.

Устройство содержит ударник 1, с тыльной стороны которого закреплен пригруз 2 изменяемой массы. Ударник 1 размещен внутри обмотки соленоида 3, подключенной к регулируемому источнику 4 переменного электрического тока.

Устройство содержит пьезоэлектрический датчик 5, электроды которого подключены к входам фильтра 6 высоких частот, выход которого соединен со входами измерителя 7 частоты и измерителя 8 коэффициента затухания. К пригрузу 2 изменяемой массы крепятся два датчика-акселерометра 9. Датчики подключены к измерительному компьютеру 10. Позицией 11 показан испытуемый образец бетона.

Устройство работает следующим образом.

Подбирают массу пригруза 2 в соответствии с модулем упругости исследуемого образца бетона 11. К пригрузу 2 крепятся датчики-акселерометры 9 перпендикулярно друг относительно друга в горизонтальной плоскости (см. фиг.2). При проведении измерений регулируемым источником переменного электрического тока 4 в обмотке соленоида 3 создают электромагнитное поле, сила которого определяет скорость ударного нагружения образца бетона 11. Под действием электромагнитного поля ударник 1 с пригрузом 2 изменяемой массы приходит в движение, результатом которого является ударное нагружение исследуемого образца бетона 11 и возникновение в последнем механических колебаний, которые, в свою очередь, регистрируются пьезоэлектрическим датчиком 5, с выхода которого сигнал через фильтр 6 высоких частот, настроенный на частоту переходного процесса, поступает на входы измерителя частоты 7 и измерителя 8 коэффициента затухания. При начале движения ударника 1 с закрепленными на пригрузе 2 изменяемой массы датчиками-акселерометрами 9, последние начинают регистрировать ускорение ударника 1. С возникновением ударного нагружения исследуемого образца бетона 11 датчики-акселерометры 9 регистрируют изменение ударного ускорения ударника 1. Сигналы от датчиков-акселерометров 9 поступают на измерительный компьютер 10 и отображаются на его дисплее в виде силы и скорости нанесенного удара.

Использование устройства позволяет точнее производить контроль за изменением прочности бетонных изделий, что необходимо для эффективного управления процессом твердения производимых и определения прочности эксплуатируемых бетонных изделий.

Устройство для измерения прочности бетона, содержащее ударник и пьезоэлектрический датчик, электроды которого подключены к входам фильтра высоких частот, выход которого соединен с входами измерителя частоты и измерителя коэффициента затухания, снабженное пригрузом изменяемой массы, обмоткой соленоида и источником переменного электрического тока, при этом ударник размещен в обмотке соленоида, соединенной с источником переменного электрического тока, отличающееся тем, что к пригрузу крепятся датчики-акселерометры, регистрирующие изменения ударного ускорения ударника и передающие данные на измерительный компьютер.



 

Похожие патенты:

Изобретение относится к инструментам для измерения физических свойств почв. Устройство содержит рукоятку, цилиндрическую пружину с тарелками, стержень с калиброванным наконечником, площадку для бумаги с бумагой и опорный башмак.

Изобретение относится к области измерения реологических свойств тяжёлых и мелкозернистых бетонных смесей, строительных цементно-песчаных растворов и контролю их технического состояния на начальном этапе твердения (схватывания) и может быть использовано в строительстве, например, на объектах монолитного строительства при контроле качества монолитных бетонных работ.

Изобретение относится к области верхнего строения железнодорожного пути, в частности к установкам для проведения полевых испытаний грунтов подбалластного основания железнодорожного пути. Установка содержит штамп со штоком, статическую опору, гидравлический домкрат с датчиком гидростатического давления и систему измерения осадки штампа.

Изобретение относится к способу подготовки к исследованию прочностных характеристик керна с нарушенной структурой методом профилирования. Подготавливают к исследованию трещиноватые, сланцеватые, глинистые, рыхлые участки керна, а также участки с плохой сохранностью кернового материала, участки керна, непригодные для создания образцов для геомеханических исследований, подбирают полимер таким образом, чтобы механические свойства были заведомо более низкими/высокими относительно изучаемого керна, причем вязкость полимера должна быть такой, чтобы не происходило глубокого проникновения полимера в поры керна, осуществляют калибровку прочностных свойств сшитого полимера.

Изобретение относится к области материаловедения и может быть использовано для исследования механических характеристик материалов, в частности для определения твердости металлических материалов методом внедрения индентора при заданной нагрузке. Сущность: осуществляют определение предела текучести неупрочненного материала, определение твердости с учетом упрочнения материала в зоне внедрения индентора, определение сопротивления деформации материала с учетом упрочнения в зоне внедрения индентора и определение твердости материала без учета упрочнения в зоне внедрения индентора по предлагаемой формуле.
Изобретение относится к неразрушающим методам контроля состояния материала, в частности к способу определения охрупчивания материала, в том числе в процессе эксплуатации конструкции. Сущность: выполняют индентирование на поверхности изделия (образца) в исходном состоянии, гарантированно соответствующего нормативным требованиям.

Изобретение относится к области определения предела текучести при кручении без разрушения материала деталей, работающих в условиях нагружения крутящим моментом. Сущность: осуществляют нагружение поверхности испытуемого материала посредством индентора под углом скрещивания 90° оси цилиндрического индентора к оси цилиндрической детали нагрузкой, величина которой соответствует диапазону измерения твердости, измерение глубины полученного остаточного отпечатка, определение критической нагрузки, и расчет предела текучести испытуемого материала цилиндрической детали при кручении по зависимости ,где F – нагрузка на цилиндрический индентор (Н); Fкр – критическая нагрузка, (Н); h – глубина остаточного отпечатка, (мм); Rпр – приведенный радиус кривизны в контакте; с – коэффициент пластичности при кручении.

Изобретение относится к области определения прочностных свойств металлов и может быть использовано для определения предела выносливости при кручении без разрушения материала деталей, работающих в условиях нагружения переменным во времени крутящим моментом. Сущность: осуществляют измерение радиусов кривизны поверхности испытуемого материала цилиндрической детали и цилиндрического индентора, определяют по ним приведенный радиус кривизны Rпр.

Группа изобретений относится к медицине, а именно к устройству, системе и способу измерения эластичности кожи. Устройство содержит средство для прикрепления устройства измерения эластичности к устройству записи изображения, механическое средство, зеркало.

Изобретение относится к исследованию прочностных свойств металлических материалов, в частности к определению усилия, вызывающего разрушение поверхностно упрочненных стальных изделий. Сущность: определяют толщину и площадь упрочненного слоя и устанавливают функциональную зависимость изменения твердости по сечению упрочненного слоя, осуществляют ее интегрирование, где в качестве интегрирующей величины выступает толщина упрочненного слоя, и определяют усилие, вызывающее разрушение поверхностно упрочненных стальных изделий, используя уравнение, учитывающее значения усилия, вызывающего разрушение поверхностно упрочненной детали, площади упрочненного слоя, площади основного металла, толщины упрочненного слоя, функциональной зависимости изменения твердости по сечению упрочненного слоя, коэффициента, для стали равного 0,345, и твердости основы металла детали.
Наверх