Патенты автора Седышев Владимир Антонович (RU)

Способ проверки отсутствия перерывов контактирования между щетками и кольцами в коллекторном токоподводе и устройство для его реализации относятся к контрольно-измерительной технике и могут быть использованы при проверке отсутствия перерывов контактирования между кольцами коллектора и щетками в цепях коллекторного токоподвода (ТП). В способе проверки отсутствия перерывов контактирования между щетками и кольцами в коллекторном токоподводе (ТП), заключающемся в одновременном пропускании через электрические цепи вращающегося коллектора контрольных высокочастотных импульсов, регистрации контрольных импульсов и импульсов, прошедших через цепи ТП, определении разности между этими импульсами, по которой судят о исправности цепей, для чего формируют пары четных и нечетных цепей ТП с замкнутыми щетками, в указанных парах одними кольцами образуют входную группу, другими кольцами образуют выходную группу; на входную группу и эталонный счетчик подают контрольные импульсы, а с выходной группы прошедшие через ТП импульсы подают на соответствующие контрольные счетчики, выполняют вращение ТП, в счетчиках производят счет импульсов при совершении ТП не менее одного оборота, результаты счета подают в микропроцессор, в котором определяют разности между числом контрольных импульсов и числом импульсов, прошедших через ТП, если разности не превышают допустимую величину, соответствующие пары цепей ТП признают исправными, если разности превышают допустимую величину, то применяют иное формирование пар цепей и аналогично проверяют пары цепей ТП и по результатам проверки определяют неисправные цепи ТП в парах. Техническим результатом изобретения является возможность проверки различных ТП, в том числе и малогабаритных, работающих в режимах передачи микротоков, малые затраты времени на контроль, повышение надежности и достоверности результатов контроля путем автоматизации процесса испытаний, повышение технологичности, снижение номенклатуры используемого оборудования, упрощение схемы испытаний. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к средствам измерения вибрационных реактивных моментов гиромоторов. Стенд содержит подвес, камеру с возможностью закрепления гиромотора экваториальной либо полярной осями вдоль вертикальной оси подвеса, первый и второй магнитоэлектрические датчики, установленные соосно в корпусе стенда, измерительный усилитель, усилитель мощности, нагрузкой которого является обмотка второго датчика, и токоподводы, противоположные концы которых через контактные платы соединены с камерой и корпусом. При этом обмотка первого датчика соединена через измерительный усилитель со средством измерения сигнала, подвес соединен с камерой и установлен в подшипниках корпуса, токоподводы выполнены в виде пружин с возможностью изменения коэффициента жесткости. Дополнительно в конструкцию введен узкополосный фильтр, выходом соединенный с входом усилителя мощности, а входом соединенный с выходом измерительного усилителя, при этом фильтр обеспечивает усиление либо подавление отдельной гармоники сигнала с выхода измерительного усилителя. Технический результат заключается в повышении точности контроля вибраций гиромотора. 4 ил.

Изобретение относится к области электротехники и может быть использовано для настройки вентильных электродвигателей. Техническим результатом является обеспечение угловой стабильности момента двигателя. В способе настройки вентильный электродвигатель, представляющий собой моментный двигатель постоянного тока, устанавливают в настроечный стенд, обеспечивающий заторможенный режим и поворот ротора двигателя, подают управляющее напряжение на входную обмотку датчика положения, при этом согласно изобретению разворачивают ротор двигателя на угол, при котором сигнал с синусной выходной обмотки датчика положения равен нулю, подают сигнал смещения на дополнительный вход усилителя синусного канала, при котором остаточный сигнал на выходе усилителя равен нулю, измеряют пусковой момент косинусного канала двигателя и по отношению момента к управляющему напряжению на входной обмотке датчика положения определяют коэффициент передачи косинусного канала. Аналогичным образом определяют коэффициент передачи синусного канала. Затем устанавливают сопротивления регулировочных резисторов усилителей косинусного и синусного каналов так, чтобы отношение сопротивлений регулировочных резисторов косинусного и синусного каналов было равно обратному отношению коэффициентов передачи этих каналов. 3 ил.

Изобретение относится к измерительной технике, и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно способу акселерометр располагают в первом положении на подвижном основании, при котором ось чувствительности пластины акселерометра лежит в плоскости горизонта перпендикулярно горизонтальной оси вращения основания, при этом подают калиброванные по уровню и знаку электрические сигналы Uсм на первый вход устройства обратной связи, для каждого сигнала Uсм измеряют сигнал Uвых на выходе и сигнал U с м ∗ смещения на втором входе устройства обратной связи и определяют зависимость Uвых от U с м ∗ , (статическую характеристику акселерометра «выходной сигнал» - «сигнал смещения»), поворачивают основание на малый угол и повторяют указанные действия, затем вычисляют параметры акселерометра. Техническим результатом является возможность прогнозирования стабильности положения оси чувствительности при смещении центра масс чувствительного элемента из-за дрейфа нуля со стороны входа устройства обратной связи, а также уровня выходного сигнала акселерометра в отсутствие ускорения силы тяжести. 4 ил.

Изобретение относится к измерительной технике и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно заявленному способу в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные сигналы Uг. Для всего требуемого диапазона частот и амплитуд сигналов Uг измеряют выходной сигнал смещения Uсм и выходной сигнал Uвых устройства обратной связи и по отношению их амплитуд к амплитуде сигнала Uг определяют динамические характеристики акселерометра. По первому варианту подают сигнал Uг в датчик силы либо через эталонную нагрузку, либо через дополнительный вход усилителя мощности цифрового устройства обратной связи, соединяя свободный вывод эталонной нагрузки с общей шиной, а сигналы Uсм и Uвых измеряют соответственно со стороны выходов следующих элементов цифрового устройства обратной связи: усилителя-преобразователя и интегро-дифференциирующего усилителя. По второму варианту подают сигнал Uг в датчик силы через эталонную нагрузку, а сигнал Uвых измеряют со стороны выхода интегро-дифференциирующего усилителя устройства обратной связи и подают на активный фильтр, с выхода которого измеряют выходной сигнал U в ы х * . Сигнал Uсм измеряют со стороны выхода усилителя-преобразователя устройства обратной связи. Технический результат - повышение точности измерения динамических характеристик акселерометра. 2 н.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, а именно к средствам измерения вибрационных реактивных моментов гиромоторов. Стенд содержит подвес, камеру, допускающую закрепление гиромотора экваториальной либо полярной осями вдоль оси подвеса, средство измерения вибраций в виде первого магнитоэлектрического датчика, обмотки которого закреплены в корпусе устройства в поле магнитов, установленных на оси подвеса, и состыкованы через измерительный усилитель со средством измерения сигнала и усилителем мощности, нагрузкой которого являются обмотки второго магнитоэлектрического датчика, установленного соосно с первым датчиком, подвес выполнен в виде вала, соединенного с камерой и вертикально установленного в подшипниках корпуса, расположенного на подставке; токоподводы гиромотора выполнены в виде трех пружин, противоположные концы которых через контактные платы стыкуются с камерой и корпусом стенда. Техническим результатом является повышение точности и технологичности контроля вибрационных реактивных моментов гиромотора на этапе его изготовления. 4 ил.

Изобретение относится к гироскопической и контрольно-измерительной технике и может быть использовано при разработке волоконно-оптических измерителей угловой скорости (ВОИУС). Измеритель содержит два усилителя-преобразователя (УП1 и УП2), формирователь синхронизирующих импульсов (ФСИ), волоконный контур, два фазовых модулятора, установленных на концах волоконного контура, и оптически связанные входной разветвитель, поляризатор и контурный разветвитель, выходами оптически связанный с концами волоконного контура, деполяризатор, приемный модуль (ПМ), источник излучения, выход которого оптически связан через деполяризатор с входом входного разветвителя, фотоприемный модуль (ФПМ), своим фотодиодом оптически связанный с выходом входного разветвителя, фазочувствительный выпрямитель (ФЧВ), а также коммутатор, входами связанный с выходами УП1 и УП2. ВОИУС может быть использован в многоканальном исполнении с произвольно расположенными осями чувствительности. Изобретение обеспечивает снижение энергопотребления при многоканальном исполнении, а также снижение погрешности масштабного коэффициента. 7 ил.

 


Наверх