Патенты автора Сердюкова Наталья Алексеевна (RU)

Изобретение относится к автоматическому управлению процессом получения биодизельного топлива. Способ управления технологией получения биодизельного топлива, предусматривающий переэтерификацию растительного масла сверхкритическим спиртом включает конденсацию паров диоксида углерода в испарителе холодильной машины, работающей в режиме теплового насоса; нагревание и снижение вязкости полученного чистого биодизельного топлива; измерение объемных расходов рапсового масла и спирта; пара в змеевик реактора; паров непрореагировавшего спирта; холодной воды в холодильник на конденсацию паров непрореагировавшего спирта; диоксида углерода перед испарителем холодильной машины; температуру диоксида углерода до и после испарителя холодильной машины и температуры кипения хладагента в испарителе холодильной машины; стабилизацию соотношения объемных расходов растительного масла и сверхкритического; стабилизацию температуры конденсации диоксида углерода в испарителе холодильной машины; воздействие на расход холодной воды, подаваемой на конденсацию отработанного рабочего пара после змеевика реактора переэтерификации и после рекуперативного теплообменника для нагревания диоксида углерода до сверхкритической температуры; а также контроль уровня сжиженного диоксида углерода в резервуаре. Технический результат – повышение точности и надежности управления технологией получения биодизельного топлива из растительного масла в сверхкритических условиях, обеспечивающей увеличение производительности при рациональном использовании энергетических затрат. 1 табл., 1 ил.

Изобретение относится к способу получения биодизельного топлива и может быть использовано в масложировой, топливной и других отраслях промышленности. Способ получения биодизельного топлива включает переэтерификацию растительного масла сверхкритическим спиртом в объемном соотношении 1:10-1:15 при температуре 250-280°С, давлении 15 МПа, конденсацию паров избыточного спирта при температуре 60-80°С, экстракцию полученной реакционной смеси диоксидом углерода в сверхкритических условиях при температуре 240-260°С, давлении 15 МПа, охлаждение полученной биодизельной смеси до температуры 20-30°С, отделение глицерина от полученной биодизельной смеси в поле действия центробежных сил, отделение паров диоксида углерода от биодизельной смеси методом газожидкостного сепарирования, компрессионное сжатие паров диоксида углерода до давления 15 МПа и их конденсацию при температуре минус 40°С посредством рекуперативного теплообмена с кипящим аммиаком, полученным в абсорбционной водоаммиачной холодильной установке, кипение водоаммиачного раствора при температуре 130°С, конденсацию паров аммиака при температуре 40°С, дросселирование сконденсированного аммиака и его кипение при температуре минус 45°С, абсорбцию паров кипящего аммиака слабым водоаммиачным раствором при температуре 35°С, нагрева воды перед парогенератором отработанным перегретым паром после кипятильника до температуры 90°С. Задачей изобретения является повышение энергетической эффективности и экологической безопасности способа получения биодизельного топлива из растительного масла с максимальной рекуперацией и утилизацией вторичных энергоресурсов в замкнутых термодинамических циклах по материальным и тепловым потокам с использованием теплового насоса. Технический результат изобретения заключается в снижении энергозатрат на охлаждение и конденсацию паров диоксида углерода, приходящихся на единицу массы получаемого биодизельного топлива и повышении экологической безопасности способа получения биодизельного топлива в сверхкритических условиях. 2 н.п. ф-лы, 1 ил.

Изобретение относится к автоматическому управлению процессом переэтерификации рапсового масла сверхкритическим этиловым спиртом и может быть использовано в химической, нефтехимической, масложировой, топливной промышленности при получении биодизельной смеси, являющейся исходным продуктом для производства биодизеля. Способ предусматривает стабилизацию температуры переэтерификации воздействием на расход пара из парогенератора в змеевик реактора и давления в реакционной зоне воздействием на мощности приводов насосов высокого давления растительного масла и этилового спирта; непрерывное измерение мощности насосов высокого давления, привода мешалки, установленной в реакционной зоне реактора, насоса отвода биодизельной смеси, вакуум-насоса отвода паров непрореагировавшего спирта и мощности парогенератора; текущих расходов рапсового масла, спирта, биодизельной смеси, паров непрореагировавшего спирта; хладагента на конденсацию паров непрореагировавшего спирта; непрерывное получение информации о концентрации спирта в биодизельной смеси в реакционной зоне. По данным всех параметров вычисляют текущие значения удельных сырьевых и теплоэнергетических потерь, определяют знак из производной по расходу рапсового масла, и если знак производной отрицательный, то увеличивают расход рапсового масла, а если знак положительный, то уменьшают расход рапсового масла; причем по давлению рапсового масла и объемному расходу паров непрореагировавшего спирта определяют текущее значение молярной концентрации этилового спирта в биодизельной смеси по формуле, приведенной ниже, где Хс - молярная концентрация этилового спирта в биодизельной смеси, моль/моль; Рм - давление рапсового масла на входе в реактор, МПа; R - газовая постоянная Дж/K⋅моль; объемный расход паров непрореагировавшего спирта, м3/ч; tp - температура реакции переэтерификации, °С. 2 ил.

Изобретение относится к масложировой и комбикормовой промышленности. Способ и устройство для производства пеллет из жмыха семян масличных культур предусматривает измельчение жмыха, экстракцию лепестков жмыха гексаном в шнековом экстракторе, дистилляцию мисцеллы и отгонку растворителя из шрота с непрерывным отводом образовавшихся паров в вакуум-выпарном аппарате, конденсацию паров кипящего гексана в рекуперативном теплообменнике за счет рекуперативного теплообмена с низкопотенциальным паром, экструзию шрота в шнековом экструдере, охлаждение жмыха перед измельчением и пеллет после экструдирования охлажденным воздухом в воздушных охладителях, использование двухступенчатого высокотемпературного парокомпрессионного теплового насоса для получения перегретого пара в конденсаторе второй ступени и его подачу в греющую рубашку экструдера, отвод высокопотенциального пара из греющей рубашки экструдера в греющую камеру вакуум-выпарного аппарата, отвод низкопотенциального пара из греющей камеры вакуум-выпарного аппарата в рекуперативный теплообменник с возвратом в конденсатор второй ступени с образованием замкнутого цикла; охлаждение воздуха в первой ступени испарителя до температуры 14-16°С, его подачу в воздушные охладители и через циклон для очистки воздуха от взвешенных частиц с возвратом в испаритель первой ступени с образованием замкнутого контура. Изобретение позволяет повысить экологическую безопасность на всех этапах технологического процесса и снизить выбросы отработанных теплоносителей в окружающую атмосферу, а также снизить удельные энергозатраты при производстве кормовых пеллет из жмыха семян масличных культур. 2 н.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к способу получения биодизельного топлива и может быть использовано в масложировой, топливной и других отраслях промышленности. Способ получения биодизельного топлива включает переэтерификацию растительного масла сверхкритическим спиртом в объемном соотношении 1:10-1:15 при температуре 250-280°С, давлении 15 МПа, конденсацию паров избыточного спирта при температуре 60-80°С, экстракцию полученной реакционной смеси диоксидом углерода в сверхкритических условиях при температуре 240-260°С, давлении 15 МПа, охлаждение полученной биодизельной смеси до температуры 20-30°С, отделение глицерина от полученной биодизельной смеси в поле действия центробежных сил, отделение паров диоксида углерода от биодизельной смеси методом газожидкостного сепарирования, компрессионное сжатие паров диоксида углерода до давления 15 МПа и их конденсацию при температуре минус 40°С, нагревание сжиженного диоксида углерода до сверхкритической температуры с возвратом на экстракцию в режиме замкнутого цикла. Установка для получения биодизельного топлива содержит реактор переэтерификации со змеевиком и лопастной мешалкой; сверхкритический флюидный СО2-экстрактор; тарельчатый сепаратор для разделения продуктов реакции на биодизельную смесь и глицерин, газожидкостный сепаратор для отделения биодизельного топлива от диоксида углерода и дополнительно снабжена отстойником для отделения воды от биодизельного топлива; а также двухступенчатым компрессором, испарителем холодильного агрегата, резервуаром для сжиженного диоксида углерода, насосом высокого давления и рекуперативным теплообменником для нагревания сжиженного диоксида, установленными последовательно в линии возврата диоксида углерода; установка укомплектована пароэжекторным тепловым насосом для подготовки теплоносителей разного температурного потенциала. Изобретение позволяет снизить удельные теплоэнергетические затраты при переработке растительного масла в чистое биодизельное топливо и повысить экологическую безопасность всего производственного цикла. 2 н.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к машиностроению. Натяжное устройство цепной передачи содержит корпус, установленный в нем механизм перемещения, закрепленный на нем установочный элемент с валом, на котором расположена звездочка. Посадочная поверхность звездочки выполнена цилиндрической, а вокруг вала соосно с ним между его поверхностью и цилиндрической посадочной поверхностью звездочки размещены усеченные полые цилиндры, при этом усеченные полые цилиндры по отношению к валу установочного элемента и к цилиндрической посадочной поверхности звездочки установлены с возможностью их взаимного вращательного перемещения относительно друг друга с образованием шарнирного соединения. Обеспечивается снижение динамических нагрузок, упрощение конструкции натяжного устройства цепной передачи. 2 ил.

Изобретение описывает способ управления процессом переработки масличных семян в биодизельное топливо, предусматривающий мойку исходных семян; очистку моечной воды в параллельно установленных и попеременно работающих фильтрах в режимах разделения и водной регенерации фильтрующих элементов; отвод отфильтрованной воды в сборник конденсата; сушку вымытых семян воздухом, подогретым в рекуперативном теплообменнике; очистку отработанного воздуха после сушки в циклоне; измельчение семян с последующей обжаркой перегретым паром атмосферного давления; механический отжим обжаренных семян в форпрессе; тонкую очистку полученного масла в вакуум-фильтре; вымораживание из очищенного масла восковых веществ в экспозиторе; подогрев масла; смешивание масла с раствором гидроксида калия в метаноле и проведение реакций переэтерификации в гидродинамическом смесителе и насосе-кавитаторе с разделением полученной смеси на глицерин и биодизельное топливо в разделительной центрифуге с использованием высокотемпературного теплового насоса, включающего компрессор, конденсатор, терморегулирующий вентиль и две секции испарителя, одну из которых используют для вымораживания из очищенного масла восковых веществ в экспозиторе, а другую для осушения очищенного от взвешенных частиц в циклоне воздуха, подготовку перегретого пара в конденсаторе теплового насоса с последующей подачей в обжарочный аппарат с образованием контуров рециркуляции по материальным и тепловым потокам, отличающийся тем, что используют двухступенчатый парокомпрессионный тепловой насос, включающий компрессоры первой и второй ступеней, испаритель первой ступени, конденсатор второй ступени, терморегулирующие вентили первой и второй ступеней и конденсатор-испаритель, который для первой ступени используют как конденсатор, а для второй ступени как испаритель; измеряют и контролируют расход исходных компонентов, температуру и влажность; реакцию переэтерификации в гидродинамическом смесителе при температуре 40-50°С в соотношении «масло-гидроксид калия в метаноле» 9:1 и в зависимости от расхода смеси масла с раствором гидроксида калия в метаноле после насоса-кавитатора устанавливают частоту вращения ротора разделительной центрифуги с выходом биодизельного топлива 95-110% от количества растительного масла после форпресса. Технический результат изобретения заключается в повышении точности и надежности управления процессом переработки масличных семян в биодизельное топливо, обеспечивающих стабилизацию качества получаемых целевых и промежуточных продуктов в интервалах заданных значений при минимальных энергетических затратах. 1 ил., 1 пр., 2 табл.

Изобретение относится к масложировой промышленности. Маслопресс содержит камеру измельчения и термообработки исходного масличного сырья, маслоотжимную камеру цилиндрической формы с зеерным цилиндром, состоящим из зеерных пластин, установленных коаксиально внутри маслоотжимной камеры, и шнек с постепенно уменьшающимся шагом витков по всей длине. Маслопресс включает три маслоотжимные камеры, соединенные между собой вставными цилиндрами, в зоне которых вал шнека снабжен радиально закрепленными штифтами; торцевые части маслоотжимных камер выполнены в виде фланцев, между которыми установлены оси с закрепленными к ним поворотными пластинами, взаимодействующими с эллипсовидными звеньями, расположенными на фланцах по окружности в обоймах. Причем эллипсовидные звенья жестко связаны со всеми зеерными пластинами с возможностью их одновременного поворота посредством червячной передачи, образованной червячным сектором, закрепленным на оси между фланцами маслоотжимных камер, и приводным червяком, обладающим свойствами самоторможения. Зеерные пластины выполнены ромбовидной формы и повернуты острыми углами навстречу движения масличного сырья внутри зеерных цилиндров. Изобретение позволяет оптимизировать работу маслопресса для переработки различных масличных культур за счет оперативного изменения расстояния между зеерными пластинами, снизить энергозатраты, уменьшить металлоемкость конструкции, повысить надежность при эксплуатации. 5 ил.

Изобретение относится к пищевой промышленности и сельскому хозяйству и может быть использовано при комплексной переработке сои. Способ предусматривает подготовку теплоносителей с применением пароэжекторного теплового насоса, включающего парогенератор с нагревательными элементами и предохранительным клапаном, эжектор, холодоприемник, двухсекционный конденсатор, терморегулирующий вентиль, сборник конденсата и испаритель, работающие по замкнутому термодинамическому циклу. В процессе осуществления способа проводят сушку семян сои, механический отжим высушенных семян с выводом соевого масла в качестве готовой продукции; охлаждение выжимки холодным воздухом, ее измельчение, смешивание с водой и нагревание в емкости с размещенной в ней вибромешалкой. Также проводят разделение полученной смеси на вибросите на растворимую и нерастворимую белоксодержащие фракции, отвод высушенной нерастворимой фракции, очистку в циклонах, охлаждение и осушение в испарителе смеси отработанных сушильных агентов и воздуха. Использование изобретения позволит повысить экологическую безопасность комплексной переработки сои с выделением белоксодержащих фракций. 1 ил.

Изобретение относится к автоматизации технологических процессов в масложировой промышленности. Способ управления линией комплексной переработки семян масличных культур предусматривает сушку семян, измельчение и механический отжим, охлаждение выжимки, измельчение и смешивание выжимки с нагретой водой, разделение полученной смеси на растворимую и нерастворимую фракции, сушку нерастворимой фракции, очистку отработанного сушильного агента, нагревание сушильного агента и воды, охлаждение и осушение отработанного сушильного агента и воздуха. Дополнительно используют пневмотранспорт для подачи измельченной выжимки на смешивание с нагретой водой в емкости с вибромешалкой; ресивер в контуре рециркуляции хладагента парокомпрессионного теплового насоса; измеряют расход и влажность исходных семян, подаваемых на переработку; расход и влажность нерастворимой фракции, подаваемой на сушку; расход выжимки, подаваемой на охлаждение; температуру выжимки перед измельчением; расход измельченной выжимки, подаваемой на смешивание с нагретой водой, расход растворимой фракции; расход и температуру паровоздушной смеси отработанного сушильного агента и воздуха перед рабочей секцией испарителя парокомпрессионного теплового насоса и после нее; температуру кипения хладагента в рабочей секции испарителя; соотношение расходов сушильного агента, подаваемого на нагревание в одну из секций двухсекционного конденсатора, и охлажденного воздуха после рабочей секции испарителя; расход воды, подаваемой на нагревание в другую секцию двухсекционного конденсатора; по измеренным значениям температуры и расхода паровоздушной смеси отработанного сушильного агента и воздуха перед рабочей секцией испарителя парокомпрессионного теплового насоса, температуры паровоздушной смеси отработанного сушильного агента и воздуха после рабочей секции испарителя и температуры кипения хладагента в испарителе определяют текущее значение коэффициента теплопередачи на охлаждающей поверхности рабочей секции испарителя и сравнивают с заданным значением и при отклонении текущего значения коэффициента теплопередачи от заданного в сторону уменьшения снижают давление хладагента, дросселирующего через терморегулирующий вентиль, и его температуру кипения в рабочей секции испарителя, а при достижении нижнего предельно допустимого значения коэффициента теплопередачи на охлаждающей поверхности рабочей секции испарителя переключают рабочую секцию испарителя на режим регенерации с подключением секции, работающей в режиме регенерации, на режим конденсации; устанавливают заданное соотношение расходов холодного воздуха, подаваемого на охлаждение выжимки, и сушильного агента, подаваемого на нагревание в одну из секций двухсекционного конденсатора; при отклонении температуры сушильного агента после одной из секций конденсатора парокомпрессионного теплового насоса воздействуют на температуру конденсации хладагента путем изменения степени компрессии хладагента посредством регулирования мощности привода компрессора; по температуре смешивания выжимки с нагретой водой устанавливают расход нагретой воды через другую секцию конденсатора парокомпрессионного теплового насоса; по расходу, температуре и влажности исходных семян устанавливают температуру и расход сушильного агента воздействием на степень компрессии хладагента. Изобретение позволяет обеспечить стабилизацию качества получаемых целевых и промежуточных продуктов в интервалах заданных значений при минимальных энергетических затратах. 1 ил., 1 табл.

Изобретение относится к сушильной технике и может быть использовано в химической и пищевой промышленности. Барабанная сушилка содержит неподвижный цилиндрический кожух с поперечными перегородками, снабженный патрубками подвода теплоносителя, загрузочное устройство, разгрузочный бункер и концентрично размещенный в кожухе перфорированный барабан с канальной насадкой. Барабан выполнен многосекционным, каждая секция которого установлена в подшипниках с возможностью автономного соосного вращения относительно неподвижного кожуха и снабжена переливной диафрагмой, при этом вращение смежных секций перфорированного барабана осуществляется через замкнутую планетарную дифференциальную передачу, образованную зубчатыми колесами-сателлитами, установленными в подшипниках стоек, выполняющих функции водил, которые закреплены к внешней поверхности предыдущей секции и взаимодействуют с зубчатым венцом, расположенным на внутренней цилиндрической поверхности неподвижного кожуха, приводя во вращение зубчатый венец, расположенный на внешней перфорированной поверхности последующей секции, выполняющий функции центрального колеса. Изобретение позволяет снизить энергозатраты, металлоемкость, позволяет повысить качество готового материала. 5 ил.

Изобретение относится к сельскохозяйственному и лесному машиностроению, в частности к почвообрабатывающим машинам для основной обработки почвы на лесных вырубках, и решает задачу повышения качества обработки почвы при различных технологических режимах работы дискового корпуса плуга и снижения энергоемкости процесса обработки почвы. Для этого дисковый корпус плуга содержит стойку с осью, на которой на подшипнике установлен сферический диск, заторможенный посредством фиксирующего механизма, находящегося в ступице корпуса плуга, и жестко закреплен отвал, состоящий из груди и крыла. Сферический диск заторможен посредством пластинчатой пружины, жестко закрепленной на стойке, а отвал, установленный на консольных стойках в направляющей, жестко закрепленной на сферическом диске, имеет возможность регулировки по высоте. 2 ил.

 


Наверх