Патенты автора Горшков Николай Вячеславович (RU)

Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к получению материалов для формирования функциональных покрытий, и может быть использовано при создании различных электронных приборов. В способе получения стабилизированной дисперсии субмикроразмерных порошков оксидных материалов, в котором порошок твердого раствора состава K1,46Ti8-хМхO16, где М – переходный металл, x = 0,3-0,7, имеет структуру голландита, в качестве дисперсионной среды используют низкокипящий одноатомный спирт, который на первом этапе «мокрого» помола берут в равных весовых долях с порошком твердого раствора по 10-20 весовых частей, а в качестве катионного поверхностно-активного вещества используют полидиметилдиалиламмония хлорид сахарозы. Изобретение позволяет получать дисперсию, обладающую высокой текучестью и высокой смачивающей способностью по отношению к токопроводящим оксидным покрытиям на основе оксида олова, а также стабильностью к расслаиванию. 1 табл.

Изобретение относится к области микроэлектроники и может быть использовано в системах, генерирующих или накапливающих электрическую энергию (конденсаторы, суперконденсаторы, источники тока). Техническим результатом изобретения является повышение удельной электрической ёмкости электрода, сохраняющейся при многократном зарядно-разрядном циклировании, и, как следствие, увеличение удельной энергии, запасаемой электродом при его включении в электрическую схему в составе накопителя электрической энергии. Мультиканальный электрод включает подложку из инертного диэлектрического материала, имеющую сотовую структуру, образованную трубчатыми микроканалами, субмикронное токопроводящее покрытие из инертного металла, например, серебра, нанесенное на поверхность подложки и поверхность стенок микроканалов, активный слой суперионного проводника в виде нано- и субмикроразмерных частиц, и токосъемник, нанесенный на подложку. Технический результат достигается за счет того, что активный слой суперионного проводника нанесен непосредственно на токопроводящее покрытие стенок микроканалов и содержит частицы твердого раствора состава KxMyTi(8-y)O16, имеющего структуру голландита, где М - по меньшей мере один переходный металл. 5 ил., 1 табл

Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к композитным диэлектрикам, обладающим высокой диэлектрической проницаемостью при сохранении высокой эластичности. Диэлектрический эластомерный композиционный материал содержит пластифицированный полимерный материал и материал наполнителя, диспергированный в полимерном материале, при этом в качестве полимерного материала содержит поливинилбутираль, а в качестве наполнителя содержит порошок диэлектрика, имеющий химический состав K1.46Ti8-xFexO16, х=0,3-0,9, и структуру голландита с объемной долей частиц наполнителя от 10 до 30% и размером частиц не более 3 мкм. Изобретение позволяет получать композитный диэлектрик, характеризующийся высокими значениями параметров диэлектрической проницаемости и эластичности при невысоком содержании функционального наполнителя. 3 н. и 9 з.п. ф-лы.

Изобретение относится к области производства материалов для твердотельной электроники, а именно к составам для получения композиционных материалов с высокой диэлектрической проницаемостью, и может быть использовано при создании конденсаторов, суперконденсаторов, оптоэлектронных преобразователей, топливных элементов, приборов фотовольтаки и др. Состав включает водный 2-9%-ный раствор поливинилового спирта, титанат калия-железа, имеющий структуру голландита и химический состав, соответствующий формуле K1,54Ti8-xFexO16, предпочтительно K1,54Ti7,4Fe0,6O16, добавку в виде фосфорно-вольфрамовой кислоты и пластификатор в виде глицерина при следующем соотношении компонентов, мас.%: водный раствор поливинилового спирта - 38-64, титанат калия-железа - 20-50, фосфорно-вольфрамовая кислота - 0-1, глицерин - остальное. Получаемый из состава композиционный материал обладает высокими диэлектрическими характеристиками. 2 з.п. ф-лы, 2 табл.
Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к технологии получения полимерных композитов с высокой диэлектрической проницаемостью, и может быть использовано при создании различных приборов и устройств твердотельной электроники, в том числе конденсаторов, суперконденсаторов, оптоэлектронных преобразователей, топливных элементов и др. Состав для получения полимерного композиционного материала включает водный 2-9% раствор поливинилового спирта, твердый электролит в виде фосфорно-вольфрамовой кислоты, наночастицы полититаната калия и пластификатор в виде глицерина, при следующем соотношении компонентов, мас.%: поливиниловый спирт - 34-64; фосфорно-вольфрамовая кислота - 5-20; полититанат калия - 20-50; глицерин - остальное. Обеспечивается получение полимерного композиционного материала, обладающего высокими диэлектрическими характеристиками при неизменном значении эффективной ионной проводимости, и относительно низкой составляющей электронной проводимости. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к композитным диэлектрикам, и может быть использовано при создании различных электронных приборов и устройств, рабочие параметры которых определяются величиной диэлектрической проницаемости межэлектродного пространства емкостных элементов, в том числе при производстве микроконденсаторов и емкостных датчиков давления и перемещения. Повышение диэлектрической проницаемости материала при сохранении высокой текучести в широком температурном диапазоне является техническим результатом изобретения. Жидкий композитный диэлектрик включает органическую жидкость с гомогенно диспергированным в ней порошком сегнетоэлектрика в форме сложного оксида с размером частиц не более 400 нм, стабилизирующую добавку в виде поверхностно-активного вещества, предохраняющую от высаживания твердой фазы из жидкого диэлектрика, в количестве 1,0-1,5% от массы общего содержания порошка сложного оксида в смеси, и добавку металлорганического соединения, увеличивающую плотность органической жидкости, в количестве 2-5% от массы органической жидкости. При этом в качестве сложного оксида использовано соединение состава K1.46Ti8-хМeхO16, где Ме=Fe или Ni, x=0,3-0,7, а в качестве органической жидкости - жидкость с температурой замерзания не выше -40°С и температурой кипения не ниже +150°С, при общем содержании нанопорошка-сегнетоэлектрика от 35 до 45 весовых частей, а органической жидкости - от 55 до 65 весовых частей. Полученный жидкий композитный диэлектрик обладает высокой текучестью и стабильностью к расслаиванию, а также имеет диэлектрическую проницаемость на уровне не менее 105 при частоте 40 Гц. 3 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области производства материалов для электрохимического и электрофизического приборостроения, а именно к технологии получения полимерных протонпроводящих композитов с высокой диэлектрической проницаемостью, и может быть использовано при создании различных электрохимических приборов и устройств, в том числе суперконденсаторов, электрохромных приборов и оптоэлектронных преобразователей, топливных элементов и др. Состав для получения полимерного протонпроводящего композиционного материала включает водный 2-9% раствор поливинилового спирта, протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты, наночастицы полититаната калия и пластификатор в виде глицерина, при следующем соотношении компонентов, мас. %: водный раствор поливинилового спирта 38-64; фосфорно-вольфрамовая кислота 19-50; полититанат калия 0,1-5,0; глицерин остальное. Способ получения полимерного протонпроводящего композиционного материала из предлагаемого состава включает смешивание наночастиц полититаната калия с водным 2-9%-ным раствором поливинилового спирта, гомогенизацию полученной смеси в течение не менее 3 часов с последующим добавлением в смесь навески фосфорно-вольфрамовой кислоты и перемешиванием в течение 8-12 ч до полного растворения кислоты, добавление в полученную смесь глицерина и ее выдерживание в течение 2-3 суток при комнатной температуре при постоянном перемешивании до полной гомогенизации, нанесение полученной смеси на основание с последующим выдерживанием при температуре не более 40°С в течение времени, обеспечивающего полимеризацию смеси с получением композиционного материала в виде пленки или пленочного покрытия. При этом наночастицы полититаната калия имеют среднее значение эффективного диаметра не более 600 нм, предпочтительно не более 300 нм, и толщину не более 40 нм, предпочтительно 20 нм. Изобретение позволяет получить полимерный протонпроводящий композиционный материал, обладающий высокой ионной проводимостью и относительно низкой составляющей электронной проводимости, а также характеризуемый высокой диэлектрической проницаемостью и высокой скоростью полимеризации при использовании материала в производственных технологических процессах. 2 н. и 2 з.п. ф-лы, 2 табл.
Настоящее изобретение относится к полимерным протонпроводящим композиционным материалам. Описан полимерный протонпроводящий композиционный материал, включающий полимерную линейную матрицу, представляющую собой водный 2-9% раствор поливинилового спирта, содержащий наночастицы серебра размером 20-100 нм в концентрации 40-100 мг/л и диспергированный в ней протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты и пластификатора в виде глицерина при следующем соотношении компонентов, мас.%: водный раствор поливинилового спирта 38-69, фосфорно-вольфрамовая кислота 19-50, глицерин остальное. Технический результат - полимерный протонпроводящий композиционный материал, обладающий высокой ионной проводимостью и максимально низкой электронной составляющей проводимости, обеспечивающий улучшение мощностных характеристик суперконденсаторов или других приборов твердотельной электроники, и увеличение длительности хранения их заряда. 2 табл., 13 пр.

 


Наверх