Патенты автора Грушин Александр Алексеевич (RU)

Изобретение «Лыжная палка» относится к спорту высших достижений, конкретно - к лыжным гонкам и биатлону. Задача настоящего изобретения - выявление удельного давления устанавливаемых шипов mn, воздействующих на упругий элемент, при котором его выталкивающая сила на гармонической составляющей w0 ускорения руки будет максимальной. Поставленная задача решается выбором собственной частоты колебаний шипов wш в соответствии с равенством:w0=wш, гдеw0 - гармоническая составляющая ускорения рук спортсмена;wш - собственная частота колебаний шипов, по которому определяют длину шипов и равную им величину сжатия упругого элемента:λ=g/wш2, гдеλ - длина шипов и равное им сжатие упругого элемента;g=9,8 м/с2 - ускорение свободного падения тела, найденная длина которых позволяет, меняя диаметр шипов и используя метод отскока, найти такое их удельное давление mn, при котором удельная выталкивающая сила упругого элемента Fn на гармонической составляющей w0 ускорения руки, вычисляемая по формуле:Fn=mn⋅an, гдеFn - n-я удельная выталкивающая сила упругого элемента на гармонической составляющей w0 ускорения руки при удельном давлении mn каждого из N устанавливаемых шипов;mn - n-е удельное давление шипа на упругий элемент на гармонической составляющей w0 ускорения руки;аn - n-е ускорение шипа с удельным давлением mn на гармонической составляющей w0 ускорения руки,будет максимальной, по которой, зная силу давления М руки на упругий элемент на гармонической составляющей ускорения руки w0, рассчитывают необходимое количество шипов N с плоским основанием, чтобы соблюсти полученный параметр mn , гдеN - количество шипов с плоским основанием, через которые давление рук передается стержню лыжной палки;М - сила давления руки на гармонической составляющей w0. Заявляемое изобретение позволяет, по сравнению с существующими устройствами, увеличить силу отталкивания лыжными палками за счет увеличения давления на упругий элемент, который осуществляют через шипы с плоскими основаниями.

Изобретение «Рукоятка лыжной палки» относится к спорту высших достижений, а именно к лыжным гонкам и биатлону, и может быть использовано при разработке новых образцов лыжных палок. Предложена конструкция рукоятки лыжной палки с упругим элементом, когда давление на указанный упругий элемент осуществляется через шипы с плоским основанием и с разной удельной массой mk с последующим возвращением их в исходное положение. Задача данного изобретения - определить величину удельной массы шипа mk, при которой на гармонической составляющей wш ускорения шипов, удовлетворяющих равенству: W0=Wш, где W0 - гармоническая составляющая ускорения руки спортсмена; Wш - собственная частота колебаний шипов, будет наблюдаться максимальная сила выталкивания. Поставленная задача решается измерением методом отскока величины удельной массы mk шипа, воздействующей на упругий элемент, при которой выталкивающая сила упругого элемента на гармонической составляющей w0, вычисляемая по формуле: Fk=mk⋅ak, где Fk - удельная выталкивающая сила упругого элемента при k-й массе шипа на гармонической составляющей w0 ускорения руки; ak - ускорение k-й удельной массы шипа на гармонической составляющей w0; mk - k-я удельная масса шипа, будет максимальной, которая определяет количество шипов с плоским основанием, создающих давление на упругий элемент: где N - количество шипов с плоским основанием, устанавливаемых на поперечной пластине фланца; М - сила отталкивания руки на гармонической составляющей w0 ее ускорения; mk - k-я удельная масса шипа. 2 ил., 1 табл.

Изобретение относится к спортивной, восстановительной и профилактической медицине, педагогическому контролю в спорте и может быть использовано для наиболее эффективной хронобиологической и климатогеографической адаптации российских высококвалифицированных спортсменов сложнокоординационных зимних видов спорта, например спортсменов-фристайлистов дисциплины «могул», на заключительном этапе подготовки к Олимпийским зимним играм в Республике Корея после дальнего трансмеридиального перелета. При этом первичную адаптацию спортсменов проводят в г. Южно-Сахалинске с последующим их перелетом и адаптацией в г. Пхенчхан Республики Корея. В качестве показателей мониторируют комплекс следующих показателей функционального состояния организма спортсмена: частоту сердечных сокращений, систолическое и диастолическое артериальное давление, пульсовое артериальное давление в положении лежа и стоя, ортостатическую пробу, частоту дыхания, массу тела и мышечную массу, уровень функциональной подготовленности спортсмена в тесте со ступенчато возрастающей нагрузкой предельного и непредельного характера, переносимость динамической нагрузки по тесту Руфье, результаты стабилометрии с биологической обратной связью, результаты динамометрии. Также исследуют биохимические показатели: уровень в крови кортизола, свободного тестостерона, дегидротестостерона, сахара, инсулина, креатинина, АЛТ, ACT, КФК, гемоглобина, гематокрита, железа, кальция, магния, фосфора. Учитывают результаты психологического исследования по тестам Люшера и САН, оценивают качество сна, самооценку индивидуального опыта соревновательной деятельности. Мониторирование комплекса перечисленных показателей проводят ежедневно. Причем исходными значениями показателей состояния спортсмена считают результаты мониторирования перечисленных его показателей в процессе предстартовых тренировок за два дня до перелета в г. Южно-Сахалинск. Способ обеспечивает условия для оперативной корректировки тренировочного процесса и своевременной корректировки процесса хронобиологической и климатогеографической адаптации российских высококвалифицированных спортсменов за счет учета множества показателей наиболее точно отражающих наступление фазы устойчивой хронобиологической и климатогеографической адаптации. Далее, ежедневное мониторирование перечисленных показателей осуществляют в г. Южно-Сахалинске, выполняя тренировки на протяжении не менее чем 10-12 дней после перелета в г. Южно-Сахалинск и поддерживая режим тренировочной нагрузки, обеспечивающий стабилизацию на исходных значениях, по меньшей мере, половины из перечисленных показателей. За два дня до перелета в г. Пхенчхан режим тренировочной нагрузки подбирают таким образом, чтобы по меньшей мере 80% из перечисленных показателей были стабилизированы на исходных значениях. После перелета в г. Пхенчхан заключительный этап тренировок спортсмена осуществляют на протяжении не менее чем 5 дней при условии стабилизации на исходных значениях не менее 50% из перечисленных показателей, поддерживая режим тренировочной нагрузки и обеспечивая такую ее длительность перед олимпийскими стартами, чтобы не менее чем за два дня до стартов все перечисленные показатели были стабилизированы на их исходных значениях. В сложнокоординационных зимних видов спорта в отличие от циклических зимних видов спорта спортсменам на следующий день после перелета выступать на соревнованиях нельзя из-за нарушения у них ортостатической устойчивости. Способ позволяет определить наступление устойчивой хронобиологической и климатогеографической адаптации, оптимальные сроки проведения заключительных этапов подготовки к соревнованиям, исключить перетренированность, оперативно корректировать тренировочный процесс и своевременно осуществлять коррекцию процесса адаптации разрешенными фармакологическими и немедикаментозными физиотерапевтическими средствами. 37 ил.

Изобретение относится к спортивной медицине, восстановительной и профилактической медицине, педагогическому контролю в спорте и может быть использовано для наиболее эффективного повышения адаптационных возможностей российских спортсменов олимпийских зимних видов спорта к измененным хронобиологическим и климатогеографическим факторам, обусловленным дальним трансмеридиальным перелетом в Восточную Азию. В целях повышения адаптации российских спортсменов-лыжников к новым климатогеографическим факторам Восточной Азии используют ежедневное нагрузочное тестирование для непредельной мышечной деятельности, применяя в качестве показателей контроля непредельной нагрузки: работа на мощности 1440 кгм/мин - для мужчин; работа на мощности 1200 кгм/мин - для женщин; достижение пиковых значений потребления кислорода на кг веса и пиковой мощности лактата в процессе тренировки; ЧСС в диапазоне мощности от 480 до 960 кгм/мин как показатель влияния акклиматизационного фактора и в диапазоне от 1200 до 1440 кгм/мин как показатель непосредственно тренировочного фактора. Параллельно проводят мониторинг функционального состояния организма спортсмена, определяя исходное функциональное состояние - до авиаперелета, а затем ежедневно - по степени изменений по сравнению с исходным. Определяют значения следующей совокупности показателей спортсмена: показателей механизмов регуляции сердечно-сосудистой системы: реакции АД и ЧСС на ортостаз, пульсового АД, показателей системного метаболизма: биохимических маркеров баланса анаболического и катаболического звеньев метаболизма, белкового и углеводного обмена, кислородно-транспортной системы, показателей морфофункционального статуса: мышечной и жировой масс, показателей психологического состояния: качества сна и желания тренироваться. Полученную динамику значений показателей функционального состояния используют при персонализированном подборе величин нагрузки спортсмену таким образом, чтобы сроки возвращения к исходным, до перелета, значениям упомянутых показателей, характеризующих устойчивый уровень функционального состояния основных систем организма у спортсмена-лыжника, составляли: для спортсменов-мужчин в группе дистанционной подготовки - 5-6 дней; в мужской группе спринтерской подготовки - 6-7 дней; в женской группе дистанционной подготовки - 7-8 дней. Способ позволяет предупредить перетренированность, осуществить своевременную коррекцию нагрузки тренировочного процесса, своевременное выявление острых десинхронозов после трансмеридиального перелета и их коррекцию фармакологическими и немедикаментозными физиотерапевтическими методами. 6 табл.

Изобретение относится к спорту высших достижений, а именно к биатлону. Задача изобретения - определить при повышенном сердечном пульсе (160-190 уд./мин) частоту гармонической составляющей W0 лыжника, подлежащей гашению. Поставленная задача решается путем проведения спектрального анализа выталкивающей силы сердечного пульса с использованием добавочной массы, в результате которого по максимальному значению выталкивающей силы Fn сердечного пульса определяют частоту гармонической составляющей W0. Гашение этой гармонической составляющей обеспечивается установкой под сгибы локтевых суставов упругих подлокотников, каждый с собственной частотой колебаний Wподлок. Заявляемый способ позволяет существенно снизить влияние частоты сердечных сокращений на стрельбу лежа в условиях соревнований. За счет установки упругих подлокотников под сгибы локтевых суставов, рассчитанных индивидуально, под каждого спортсмена, выталкивающая сила сердечного пульса биатлониста гасится таким образом, что она становится минимальной и не влияет на итоговый результат стрельбы. 2 табл., 2 ил.

Изобретение относится к области спорта и может быть использовано при создании упругих подпятников, вкладываемых в спортивную обувь с целью получения дополнительной выталкивающей силы. Устройство для измерения выталкивающей силы упругого объекта состоит из устанавливаемой на исследуемый образец трубки с приваренным к одному из ее концов фланцев и металлических стержней разной массы, на верхних концах которых закрепляют датчики ускорения. При измерении выталкивающей силы упругого объекта металлические стержни с различными массами размещают внутри трубки на фиксированной высоте от поверхности образца и отпускают. Далее измеряют ускорения указанных стержней и рассчитывают выталкивающую силу исследуемого упругого объекта по формуле: Fkn = mk·akn, где Fkn - удельная выталкивающая сила упругого объекта на n-й гармонике при к-й удельной массе стержня; mk - к-я удельная масса стержня; akn - ускорение удельной к-й массы стержня на n-й гармонике. Техническим результатом изобретения является возможность осуществления оценки частотных характеристик двигательных действий спортсменов, а также максимальной силы выталкивания. 2 н.п. ф-лы, 1 ил., 1 табл.

Изобретение «Способ подбора пар лыж по их упругим свойствам» относится к измерительной технике, предназначено для подбора пар лыж по их упругим свойствам и может быть использовано в спорте высших достижений. Задача изобретения - повышение точности подбора пар лыж по их упругим свойствам. Поставленная задача решается сравнительным спектральным анализом уровней ускорений отобранной пары лыж при одновременном их возбуждении путем кратковременного нажатия на положенную поперек колодок испытываемой пары лыж доску. Сравнительный спектральный анализ уровней ускорений осуществляется при помощи двухканального спектранализатора, к входам которого подключены датчики ускорения, порознь установленные на колодках лыж, а к выходам - вольтметры в качестве индикаторов уровней ускорений, выраженных в единицах напряжения. Для определения разбаланса коэффициента передачи ускорений по обоим каналам на каждой полосе пропускаемых частот датчики ускорения предварительно устанавливают на колодку одной лыжи и по отношению показаний вольтметров определяют требуемое значение. Степень идентичности упругих свойств пары лыж оценивают по максимально близкому совпадению уровней ускорений на измеряемых полосах пропускаемых частот с учетом их разбаланса. Заявляемый способ позволяет максимально точно подобрать пары лыж с одинаковыми упругими свойствами. 3 з.п. ф-лы, 1 ил.

Изобретение «Способ сравнительной оценки качества скольжения лыж» относится к спортивному инвентарю и может быть использовано в области физической культуры для оценки качества скольжения лыж по снегу. Задача изобретения - разработка способа сравнительной оценки качества скольжения лыж с использованием одноканального спектр-анализатора (на основе патента РФ №2458327 С1) и одного вольтметра без какого-либо дополнительного оборудования. Поставленная задача определяется тем, что амплитуду ускорения измеряют на гармонической составляющей (2,43-2,5) Гц, выделяемой спектр-анализатором, а датчик ускорения при этом закреплен на кисти одной из рук спортсмена при одновременном отталкивании с места лыжными палками. Схема измерения, реализующая предложенный способ сравнительной оценки качества скольжения лыж, заключается в том, что спортсмен, стоя на лыжах, отталкивается лыжными палками, а датчик ускорения, закрепленный на кисти одной из рук, вырабатывает сигнал ускорения данной руки, который поступает в спектр-анализатор. В спектр-анализаторе с помощью сменных RC-цепочек устанавливается полосовой фильтр (2,43-2,5) герц. Помещенный в поясную сумку спортсмена, спектр-анализатор фильтрует этот сигнал, пропуская на выход лишь гармонику с частотой следования 2,5 герц. Вольтметр подключен к выходу спектр-анализатора и фиксирует ускорение руки на данной гармонике - чем оно больше, тем лучше скользящие свойства лыж при конкретной смазке. Было проведено сравнение скольжения лыж при трех видах смазки в координатах: ось X - частота (герц); ось Y - ускорение лыж м/сек2, где 1, 2, 3 - различные виды смазок. Заявляемый способ позволяет, по сравнению с существующими способами, более точно измерять скольжение лыж. 2 ил.

 


Наверх