Патенты автора Галикеев Артур Рифович (RU)

Изобретение относится к области эксплуатации магистральных газопроводов и может быть использовано для безопасного выполнения предремонтных (опорожнение) и предпусковых (заполнение участков магистральных газопроводов природным газом) операций, а также для создания резервного питания импульсным газом приводов линейных, байпасных и свечных кранов в составе крановых узлов при возможном нарушении целостности многониточных магистральных газопроводов, проложенных в одном технологическом коридоре. Байпасная и импульсная обвязки линейных кранов в составе крановых узлов многониточных магистральных газопроводов, проложенных в одном технологическом коридоре, включают байпасные и свечные газопроводы с байпасными и свечными кранами, а также импульсные обвязки, состоящие из: стояков отбора импульсного газа с отводными кранами, емкостей резервного питания импульсным газом с входными и выходными газопроводами, отсечными кранами и манометрами, газопроводов контуров импульсной обвязки с отсечными и свечными кранами, свечными линиями и обратными клапанами, манометрами, шкафами датчиков КИПиА, фильтрами, электропневматическими узлами управления пневмогидроприводами линейных, байпасных и свечных кранов в составе крановых узлов многониточных магистральных газопроводов. При этом между байпасными и свечными кранами смонтированы узлы переключений на байпасных обвязках, состоящие из обводных газопроводов с обводными кранами и кранами-регуляторами; в импульсных обвязках смонтированы узлы переключений между стояками отбора импульсного газа, состоящие из обводных газопроводов с обводными кранами и кранами-регуляторами, между газопроводами байпасных обвязок и входными газопроводами в емкости резервного питания импульсным газом смонтированы обводные газопроводы с обводными кранами, между выходными газопроводами из емкостей резервного питания импульсным газом смонтирован обводной газопровод с обводным краном. Изобретение обеспечивает компенсацию температурного разбаланса, возникающего в крановых узлах при опорожнении (резкое охлаждение в зоне свечной линии и свечного крана) и заполнении (резкий нагрев в зоне стояков отбора импульсного газа) участков магистральных газопроводов природным газом. 1 ил.

Изобретение относится к объектам магистрального газопровода и может быть использовано для выработки природного газа из прилегающих к компрессорной станции участков магистрального газопровода перед выводом их в капитальный ремонт. Технический результат - получение большего объема сэкономленного товарного газа за счет более эффективного опорожнения четырех участков магистрального газопровода в четырехниточном коридоре. Согласно предлагаемому техническому решению выработку газа осуществляют путем применения двух цеховых контуров компримирования, каждый из которых включает три газоперекачивающих агрегата, в центробежном компрессоре которых используется полнонапорная сменная проточная часть, дополнительно применяют промежуточное охлаждение потока газа после третьей ступени сжатия в центробежном компрессоре, откачку газа производят цеховыми контурами компримирования, каждый из которых включает три газоперекачивающих агрегата из одного из трех участков магистральных газопроводов, содержащий отключенный и примыкающий участки ко второму цеху компримирования, до максимальной степени сжатия компрессоров газоперекачивающих агрегатов в пределах рабочей области газодинамических характеристик центробежных компрессоров. 1 ил., 1 табл.
Изобретение относится к области цементации стальных изделий и может быть использовано для поверхностного упрочнения деталей машин и механизмов путем их термообработки в среде твердого карбюризатора. Состав карбюризатора для цементации изделий из низкоуглеродистой стали содержит, в мас.%: чугунную стружку со средним размером гранул 0,5 мм - 10, карбонат бария ВаСО3 - 10 и углеродное вещество – 80. Углеродное вещество состоит из, в мас.%: аморфного углерода - 96,2, кристаллического углерода - 2,85, железа - 0,94 и водорода - 0,01 и получено термокаталитическим пиролизом газового конденсата, отобранного с конденсатосборника газораспределительной станции, в условиях контакта с железооксидным катализатором Fe2O3 при температуре 550°С, объемной скорости подачи сырья 30 мл/мин, в течение 5 ч, с последующим отсевом фракции 50-150 мкм путем фракционирования образовавшейся массы на молекулярных ситах. Обеспечивается требуемое диффузионное насыщение углеродом, достижение равномерности глубины слоя по площади изделия и снижение энергозатрат. 2 пр.

Изобретение относится к вспомогательному оборудованию компрессорных станций магистрального газопровода. Система тепловодоснабжения компрессорной станции выполняется с возможностью отключения оборудования линии исходной воды с обеспечением подпитки исходной водой в аварийном режиме, снабжается циркуляционным контуром и насосом для перемешивания в баке-аккумуляторе подпиточной воды и подачи в теплотрассу обратной сетевой воды теплоносителя, в качестве которого используется 3%-ный раствор 1-гидроксиэтилидендифосфоновой кислоты (С2Н8О7Р2) в дождевой воде. Изобретение направлено на ресурсосбережение за счет экономии топливного природного газа, которая зависит от снижения накипеобразования в теплонапряженных участках. 1 ил.

Изобретение относится к области газовой промышленности, в частности к объектам магистрального газопровода, и может быть использовано для сокращения потерь природного газа при эксплуатации узла сбора конденсата системы очистки технологического газа компрессорной станции. Задачей изобретения является ресурсосбережение за счет экономии природного газа, который вместо стравливания в атмосферу из двух подземных емкостей сбора конденсата, технологически взаимосвязанных между собой, используется для подачи в качестве входного газа высокого давления в блок топливного и пускового газа для собственных технологических нужд компрессорного цеха и в качестве топливного газа низкого давления для блоков горелок подогревателя газа и водогрейных котлов резервной котельной компрессорной станции. Технический результат достигается тем, что в действующей схеме узла сбора конденсата системы очистки технологического газа компрессорной станции, включающего две технологически взаимосвязанные между собой подземные емкости, обвязанные трубопроводной арматурой при помощи трубопроводов высокого и низкого давления, согласно изобретению смонтирован газопровод-отвод высокого давления с трубопроводной и запорно-регулирующей арматурой между продувочным газопроводом первой подземной емкости сбора конденсата и входным газопроводом в блок топливного и пускового газа; смонтирован газопровод-отвод низкого давления с трубопроводной и запорно-регулирующей арматурой между продувочным газопроводом второй подземной емкости сбора конденсата и входным газопроводом в блок горелок подогревателя газа; смонтирован отвод с запорно-регулирующей арматурой между газопроводом-отводом низкого давления в блок горелок подогревателя газа и входным газопроводом в блок горелок водогрейных котлов резервной котельной. 1 ил., 3 табл.

Изобретение относится к области газовой промышленности, в частности к компрессорным станциям магистрального газопровода. В действующей схеме системы регулирования уплотнения центробежного компрессора, включающей торцевые уплотнения, газоподогреватель, аккумулятор масла, основной и резервный маслонасосы уплотнения, регуляторы перепада давления по маслу и газу, газоотделитель, поплавковую камеру и сигнализатор помпажа, осуществляют монтаж газопровода с трубопроводной арматурой, двухступенчатой эжекционной установки, состоящей из двух последовательно установленных эжекторов, и регулятора давления, при помощи которых производят подачу отделенного от масла газа в газоотделителе в линию топливного газа газотурбинной установки газоперекачивающего агрегата компрессорной станции с выходным давлением после регулятора давления газа 2,8 МПа. Техническим результатом предлагаемого изобретения является ресурсосбережение. 2 ил.

Изобретение относится к области газовой промышленности, в частности к объектам магистрального газопровода, и может быть использовано при эксплуатации компрессорной станции. Способ очистки аппарата воздушного охлаждения природного газа на компрессорной станции заключается в том, что для подключения аппарата воздушного охлаждения газа к коллекторам входа и выхода газа осуществляют демонтаж двух участков металлических газопроводов между входным шаровым краном и аппаратом воздушного охлаждения газа, а также между аппаратом воздушного охлаждения газа и выходным шаровым краном; монтаж двух гибких рукавов высокого давления посредством четырех фланцевых соединений, двух манометров на входе и выходе из аппарата воздушного охлаждения газа, позволяющих оценить степень загрязненности, ухудшение теплосъема и необходимость проведения очистки при наличии перепада давления газа 0,02 МПа; для проведения очистки трубного и межтрубного пространства теплообменных секций аппарат воздушного охлаждения газа останавливают, стравливают газ в атмосферу. Производят разбор фланцевых соединений и теплообменных секций, которые после промывки острым паром из паропроизводительной установки и последующей осушки устанавливают обратно в аппарат воздушного охлаждения газа. Сборку осуществляют в обратном порядке. Технический результат - обеспечение полной очистки трубного и межтрубного пространства теплообменных секций от механических загрязнений за счет применения разборной конструкции. 1 ил.

Изобретение относится к области газовой промышленности, в частности к компрессорным станциям магистрального газопровода, и может быть использовано для выработки природного газа из прилегающего к компрессорной станции участка магистрального газопровода перед выводом его в капитальный ремонт. Выработку газа из выведенного в ремонт участка магистрального газопровода в трехниточном коридоре осуществляют двумя разнотипными газоперекачивающими агрегатами компрессорной станции по схеме «в параллель» в режиме работы газотурбинной установки и полнонапорных центробежных компрессоров в области их максимального коэффициента полезного действия. Это обеспечивает ресурсосбережение природного газа, который вместо стравливания в атмосферу направляется в качестве товарного газа потребителю, тем самым, повышая эффективность товарно-транспортной работы газотранспортного предприятия. 2 ил., 1 табл.

Изобретение относится к области газовой промышленности, в частности к магистральному транспорту газа, и может быть использовано для регулирования процесса охлаждения компримированного газа при эксплуатации трехцеховых компрессорных станций в условиях сниженной загрузки. В действующей схеме системы охлаждения компрессорной станции осуществляют монтаж межцеховых перемычек с трубопроводной арматурой между выходным газопроводом из аппаратов воздушного охлаждения газа (АВОГ) первого цеха и входным газопроводом в АВОГ остановленного в резерв второго цеха, выходным газопроводом из АВОГ второго цеха и входным газопроводом в АВОГ остановленного в резерв третьего цеха для повышения тепловой мощности, а также перевод цеховых групп АВОГ с режима работы с двумя включенными вентиляторами на режим работы с одним включенным вентилятором. Технический результат: достижение равномерности распределения загрузки цеховых групп АВОГ, в том числе и не участвующих в процессе компримирования и остановленных в резерв цехов, снижение энергетических потерь на линейном участке магистрального газопровода между двумя компрессорными станциями при одновременном уменьшении затрат на электроэнергию. 1 ил.

Изобретение относится к способу получения электропроводных резиновых вулканизатов. Способ включает вулканизацию при температуре 150°С резиновой смеси, содержащей, мас.%: каучук марки СКН-18 - 40, полисульфидный ускоритель вулканизации - 12, дибутилфталат - 1, диамин - 1, фталевый ангидрид - 1, углеродный наполнитель - 40, регенерат – 5. При этом в качестве углеродного наполнителя используют углеродное вещество волокнистой структуры, полученное термокаталитическим пиролизом газового конденсата из системы очистки природного газа на компрессорной стации магистрального газопровода в условиях контакта с железооксидным катализатором Fe2O3 при атмосферном давлении и температуре 600-700°С, объемной скорости подачи сырья 25 мл/мин, в течение 5 ч, с последующим охлаждением до 20°С и отсевом фракции 50-150 мкм путем фракционирования образовавшейся углеродной массы на молекулярных ситах. Готовый резиновый вулканизат подвергают дополнительной термообработке в термостате при температуре 250°С в течение 3 ч. Техническим результатом являются повышение выхода целевого продукта, относительная стабильность электропроводных свойств во времени и упрощение технологии получения продукта. 3 табл.

Изобретение относится к области управления работой газоперекачивающих агрегатов компрессорной станции магистрального газопровода. Выработку газа из выведенного в ремонт участка магистрального газопровода осуществляют по заранее выбранной математической модели - а именно, двумя разнотипными газоперекачивающими агрегатами компрессорной станции по схеме «в параллель» в режиме работы полнонапорных центробежных компрессоров в области их максимального политропного коэффициента полезного действия. Полученные ряды значений газодинамических характеристик сравнивают с расчетными, интерпретируют в качестве оптимальных зон работы центробежных компрессоров и направляют для принятия диспетчерских решений в систему автоматизированного управления газоперекачивающих агрегатов в качестве управляющих параметров воздействия на систему регулирования компрессорной станции. Техническим результатом предлагаемого способа является ресурсосбережение природного газа. 17 ил., 2 табл.

Изобретение относится к области газовой промышленности и может быть использовано при эксплуатации многоцеховых компрессорных станций магистрального газопровода. Способ стабилизации давления газа на компрессорной станции магистрального газопровода, включающий отбор газа на собственные технологические нужды, отличающийся тем, что стабилизацию давления газа осуществляют, устанавливая межцеховые перемычки между линиями подачи топливного газа от установки подготовки газа к установке подготовки топливного, пускового и импульсного газа и между блоками подготовки топливного и пускового газа, представляющие собой два смонтированных участка газопровода, в которые врезаны два шаровых крана, при этом подключение перемычек осуществлено через четыре сварных равнопроходных тройника. При этом обеспечивается требуемая стабильность параметров отобранного топливного газа, снижаются общестанционные энергозатраты за счет срабатывания газа из отключаемого на ремонт участка магистрального газопровода в качестве топлива в соседних компрессорных цехах через межцеховые перемычки между линиями подачи топливного газа. 4 ил., 1 табл.

Изобретение относится к области цементации стальных изделий и может быть использовано для поверхностного упрочнения деталей машин и механизмов путем их термообработки в среде твердого карбюризатора. Карбюризатор для цементации изделий из низкоуглеродистой стали содержит высокодисперсную сажу в виде побочного продукта неполного сгорания природного газа в газоиспользующем теплогенерирующем оборудовании газораспределительных и компрессорных станций магистральных газопроводов, чугунную стружку со средним размером гранул 0,5 мм и карбонат бария, при следующем соотношении компонентов, мас.%: высокодисперсная сажа - 80, чугунная стружка - 10 и карбонат бария - 10. Обеспечивается требуемое диффузионное насыщение стальных изделий углеродом, достигается равномерность глубины слоя по площади изделия и снижаются энергетические затраты. 3 табл., 2 пр.

Изобретение относится к области цементации стальных изделий и может быть использовано для поверхностного упрочнения деталей машин и механизмов из низкоуглеродистой стали. Осуществляют цементацию изделий в твердом карбюризаторе, охлаждение, двойную закалку и низкотемпературный отпуск. Цементацию проводят при 900°C. В качестве твердого карбюризатора используют состав, содержащий в мас. %: чугунную стружку со средним размером гранул 0,5 мм - 10, карбонат бария ВаСО3 - 10 и углеродное вещество волокнистой структуры - 80, состоящее из, в мас. %, железа - 10, водорода - 0,8 и углерода - 89,2, которое получено термокаталитическим пиролизом попутного нефтяного газа Баядынского месторождения в условиях контакта с железооксидным катализатором при температуре 660°C , объемной скорости подачи сырья 1000 часов-1 в течение 3 часов с последующим отсевом фракции 100-250 мкм путем фракционирования образовавшейся массы на молекулярных ситах. После цементации осуществляют охлаждение изделий до 100°C, затем проводят двойную закалку, включающую проведение первой закалки при температуре 820°C, а второй закалки - при температуре 770°C, после которой проводят низкий отпуск при температуре 150°C. Обеспечивается требуемое диффузионное насыщение углеродом, достигается равномерность глубины слоя по площади изделия, снижение энергетических затрат, а также необходимость в охлаждении водным раствором охлаждающей жидкости и добавке эмульгатора. 3 табл.

 


Наверх