Патенты автора Акопян Аргам Виликович (RU)

Изобретение относится к области нефтепереработки и коксохимии, в частности, к области получения нефтяного кокса с пониженным содержанием серы путем предварительного окисления сернистых соединений, содержащихся в сырье для коксования, до соответствующих сульфонов и может быть использовано в нефтеперерабатывающей и коксохимической промышленности. Заявлены варианты способа, каждый из которых включает смешение серосодержащего углеводородного сырья с катализатором и окислителем, перемешивание исходных компонентов, окисление при повышенной температуре, выделение продукта, содержащего окисленные сернистые, соединения и его коксование с получением товарного продукта – кокса. Причем при смешении исходных компонентов дополнительно добавляют поверхностно-активное вещество - соль четвертичного аммония, взятую в количестве 0,1-4 мас.% по отношению к массе углеводородного сырья, в качестве окислителя используют в одном варианте - газообразный окислитель, а в другом варианте - жидкий окислитель при соотношении окислитель:сера, содержащаяся в углеводородном сырье, равном 2-30:1; катализатор берут в количестве 0,05-1 мас.% по отношению к углеводородному сырью, перемешивание исходных компонентов осуществляют со скоростью не менее 600 об/мин, окисление полученной смеси ведут при температуре 40-200°С, давлении 1-20 атм в течение 1-6 ч, затем охлаждение, в случае использования жидкого окислителя отделение водной фазы, содержащей отработанные окислитель и катализатор, и коксование выделенного продукта при температуре 420-560°С. Техническим результатом заявленной группы изобретений является упрощение и удешевление способа получения кокса с пониженным содержанием серы при таком же или более низком содержании серы в коксе. 2 н. и 8 з.п. ф-лы, 1 табл., 29 пр.

Изобретение относится к химической промышленности и может быть использовано для получения жидкого технического аммиака из аммиаксодержащего газа, в котором помимо аммиака содержатся примеси кислых газов, меркаптаны и пары воды. Способ очистки аммиаксодержащего газа и получения безводного жидкого аммиака включает стадию очистки аммиаксодержащего газа и стадию получения безводного жидкого аммиака. На стадии очистки аммиаксодержащего газа осуществляют взаимодействие аммиаксодержащего газа с водой в абсорбере. Собранную на глухой коллекторной тарелке абсорбера часть аммиачной воды охлаждают и подают в абсорбер в качестве орошения. По сигналу поточного анализатора, установленного на трубопроводе отвода аммиачной воды, и по сигналу датчика температуры, установленного в верхней части абсорбера, осуществляют изменение расхода подаваемых в абсорбер воды и аммиачной воды. На стадии получения безводного жидкого аммиака аммиачную воду с концентрацией 15-30 мас.%, полученную на стадии очистки, подают в среднюю часть ректификационной колонны, где она при давлении 1,4-2,5 МПа разделяется на пары, обогащенные аммиаком, и воду. Пары, обогащенные аммиаком, отводят из ректификационной колонны и конденсируют. Часть полученного безводного жидкого аммиака подают в ректификационную колонну в качестве орошения и на дросселирование с последующей подачей охлажденного газообразного аммиака в абсорбер. Изобретение позволяет повысить эффективность поглощения загрязняющих веществ, таких как сероводород, углекислый газ, меркаптаны, и выход безводного жидкого аммиака. 1 ил., 4 табл.

Изобретение относится к области синтеза цеолитного материала. Способ включает приготовление в тефлоновом вкладыше автоклава водного раствора, характеризующегося рН=11.5-13.5, содержащего соединение алюминия и темплат, с добавлением соединения кремния, взятых в мольных соотношениях темплат/Si=0.05-0.3, Si/Al=25-150; H2O/Si=5-25 до получения гелеобразной массы. Затем проводят кристаллизацию полученной массы с последующим выделением кристаллического продукта, его промывкой дистиллированной водой, высушиванием до постоянного веса и отжигом при 550±10°С в течение 6-10 часов. Далее проводят реакцию ионного обмена водным раствором соли аммония с последующим фильтрованием продукта, промывкой его дистиллированной водой, высушиванием до постоянного веса и прокаливанием при 500±10°С в течение 5-8 часов. Обеспечивается получение кристаллического цеолита со структурой MTW (типа ZSM-12) in situ со степенью кристалличности более 90% при сокращении времени синтеза. 11 з.п. ф-лы, 1 ил., 7 пр.

Изобретение относится к получению алюмосиликатного цеолита со структурой MTW (типа ZSM-12). Смешивают водные растворы, содержащие источник алюминия, источник кремния, структурообразующий агент (OSDA), выбранный из солей моноэтанол-N,N-диметил-N-этил-аммония или диэтанол-N-метил-N-этил-аммония, и источник щелочного металла. Получают реакционную смесь, имеющую следующее мольное соотношение компонентов (0,074-0,148) Na2O : 0,0035 Al2O3 : SiO2 : 0,12 OSDA : 12,1 H2O и рН смеси равный 11,5-13,5. Проводят кристаллизацию полученной смеси, выделяют кристаллический продукт, промывают дистиллированной водой до достижения рН фильтрата 9,0-9,5, высушивают и прокаливают при 550±10°С. Затем проводят реакцию ионного обмена с раствором соли аммония, высушивают до постоянного веса и прокаливают при 550±10°С. Изобретение обеспечивает получение цеолита со следующими характеристиками: степень кристалличности не менее 90%, размер кристаллитов - не менее 0,5 мкм, но не более 5 мкм; содержание оксида натрия в Н-форме цеолита - не более 0,05%; отношение SiO2/Al2O3 - от 50 до 300. 7 з.п. ф-лы, 2 ил., 8 пр.

Изобретение относится к области нефтеперерабатывающей промышленности, а именно к области каталитического крекинга вакуумного газойля. Способ каталитического крекинга вакуумного газойля характеризуется тем, что включает предварительный нагрев сырья до температуры, при которой вакуумный газойль переходит в жидкое состояние, затем добавляют смесь, включающую пероксид водорода с концентрацией 20-37 мас.% и катализатор, следующего состава (мас.%): концентрированная муравьиная кислота 80±5, вода 13±5, соединение, содержащее молибден 4±1, поверхностно-активное вещество, растворимое и устойчивое в катализаторе 2±0,5, межфазный переносчик 1±0,1, полученную реакционную смесь перемешивают при температуре, при которой вакуумный газойль переходит в жидкое состояние, в течение 1-2 часа, затем при температуре 60°С±10°С в течение еще 1-2 ч и далее 4 часа ± 10 мин при температуре 80°С±5°С, по окончании реакции смесь нагревают до 100°С±5°С и добавляют экстрагент для извлечения продуктов окисления, перемешивают 5-10 мин при данной температуре и отделяют экстрагент с получением очищенного вакуумного газойля, затем полученный обессеренный вакуумный газойль подвергают каталитическому крекингу с использованием цеолитсодержащего катализатора при температуре 480-540°С, давлении 0,1-0,3 МПа и массовой скоростью подачи сырья 12,2-20 ч-1 с получением широкой фракции каталитического крекинга с повышенным содержанием бензиновой фракции. Технический результат - снижение количества серы в жидких продуктах каталитического крекинга, повышенный выход бензиновой фракции и малый выход кокса в ходе крекинга при использовании в качестве сырья предварительно окисленного вакуумного газойля. 6 з.п. ф-лы, 2 табл.

Изобретение относится к области каталитического крекинга негидроочищенного вакуумного газойля. Описан способ каталитического крекинга негидроочищенного вакуумного газойля, характеризующийся тем, что приемник для сбора жидких продуктов крекинга охлаждают до 0±5°С, и реактор продувают аргоном со скоростью 30 см3/мин ±5 см3/мин в течение 10 минут, после чего проверяют герметичность реактора, в который подают подогретый до 70±5°С негидроочищенный вакуумный газойль, затем в реактор добавляют предварительно перемешанную каталитическую композицию, состоящую из катализатора крекинга и 10±1 масс. % добавки от массы катализатора, затем доводят температуру реактора с каталитической композицией до температуры 500±10°С, при этом в качестве добавки используют носитель на основе мезопористого алюмосиликата Al-МСМ-41 и оксида алюминия, взятых в соотношении 40/60-60/40 масс %, с нанесенным на него Zn или Mg в количестве 5±0,5 масс. % от массы носителя. Технический результат метода - снижение количества серы в жидких продуктах крекинга негидроочищенного вакуумного газойля. 1 з.п. ф-лы, 3 табл.

Изобретение относится к способу получения концентрата сульфоксидов и сульфонов, включающему окисление серосодержащих соединений в углеводородной фракции с исходным содержанием серы не менее 0,1% пероксидом водорода с концентрацией 20-37 мас.% в присутствии каталитической смеси при температуре от 40 до 80°С, отделение водной фазы путем сепарации и перегонки полученной углеводородной фракции при температуре 30-550°С. При этом каталитическая смесь включает муравьиную кислоту, соединение, содержащее молибден и поверхностно-активное вещество, устойчивое в присутствии пероксида водорода. Технический результат - двухстадийное получение концентрата сульфоксидов и сульфонов без использования стадии экстракции, а также дорогостоящих и коррозионно активных экстрагентов. 8 з.п. ф-лы, 1 табл., 33 пр.

Изобретение относится к области нефтепереработки и нефтехимии, к каталитической окислительной композиции для обессеривания сырой нефти в мягких условиях, со снижением кинематической и динамической вязкости. Способ обессеривания сырой нефти включает приготовление окислительной композиции, окисление нефти каталитической окислительной композицией, причем полученную смесь перемешивают в течение 2-6 ч, после чего проводят многоступенчатую экстракцию ацетоном и водой. Каталитическая окислительная композиция для обессеривания сырой нефти включает водный раствор пероксида водорода с концентрацией от 10 до 20 мас.%, соль, содержащую переходный металл 6 группы Периодической системы, растворимую в Н2О2, и жирную кислоту с 11 до 17 атомов углерода, растворимую в Н2О2, при следующем соотношении в мольных долях: переходный металл 6 группы : сера в нефти = 1:200 до 1:50; пероксид водорода : сера в нефти = 1:1 до 4:1; жирная кислота с 11 до 17 атомов углерода : сера в нефти = 0,5:1 до 2:1. Смесь для экстракции включает ацетон и воду при следующем соотношении по объему: ацетон : объем нефти = 0,5:1 до 4:1; ацетон : вода = 1:0,05 до 1:0,2. Технический результат - высокая степень удаления серы из сырой нефти (до 70%), снижение вязкости нефти (с 2,623 до 2,13 сСт), протекание реакции в мягких условиях (20-60°С, атмосферное давление, постоянное перемешивание со скоростью 500 об/мин). 3 з.п. ф-лы, 9 пр., 1 табл.
Изобретение относится к области нефтепереработки, в частности к методам безводородного снижения содержания серы в вакуумном газойле, а также к составу катализатора для проведения реакции окисления сернистых соединений, содержащихся в вакуумном газойле. Заявлен катализатор для окислительного обессеривания вакуумного газойля следующего состава (масс. %): концентрированная муравьиная кислота 80±5, вода 13±5, соединение, содержащее молибден, или вольфрам, или ванадий 4±1, Неонол АФ 9-6 или N-оксид амина 2±0,5, тетрабутиламмоний бромид или тетраоктиламмоний бромид 1±0,1. Техническим результатом заявляемой группы изобретений является высокая степень удаления серы из вакуумного газойля с высокой селективностью, позволяющей минимизировать негативное воздействие на углеводородный состав сырья. 2 н. и 5 з.п. ф-лы, 13 пр.

Изобретение относится к области нефтепереработки и нефтехимии, в частности к способам обессеривания сырой нефти пероксидом водорода с использованием каталитических систем на основе неорганических и органических кислот с последующим выделением продуктов окисления сульфоксидов и сульфонов. Описан способ обессеривания сырой нефти, включающий окисление нефти каталитической окислительной композицией, включающей пероксид водорода концентрацией не менее 20 мас.%, взятый в 2-6 кратном мольном избытке по отношению на один моль содержащейся серы в нефти, и органическую или минеральную кислоту, имеющую pKa - 3-4,76 и не разлагающую пероксид водорода, взятую в мольном соотношении 0,2-5 по отношению к одному молю содержащейся серы в нефти, при этом на одну часть каталитической композиции берут от 10 до 500 мас. частей сырой нефти, полученную смесь обрабатывают путем постоянного перемешивания на магнитной мешалке до полного протекания реакции окисления, после чего из реакционной смеси удаляют остатки окислительной композиции и продукты окисления. Технический результат - высокая степень удаления серы из сырой нефти, окисление трудноокисляемых сернистых соединений, минимальные негативные влияния на состав нефти, более простое аппаратное оформление, протекание реакции в мягких условиях 20-70°С, а также возможность выделения концентрата сульфоксидов и сульфонов в качестве ценного продукта. 8 з.п. ф-лы, 5 пр., 1 табл.
Изобретение относится к способу получения синтетической нефти из твердых горючих сланцев. Способ получения высококачественной синтетической нефти из горючих сланцев включает: предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей до фракций до 0,5 мм и сушку до постоянной массы, смешивание полученного горючего сланца с вакуумным газойлем, на который предварительно воздействовали электромагнитными волнами мощностью 0,1-0,8 кВт в течение 1-10 ч и частотой 40-60 МГц, в массовых соотношениях от 1:10 до 10:1, введение каталитической добавки, включающей нафтенат кобальта и/или гексакарбонил молибдена из расчета 0,5-25 г каталитической добавки на 1 кг смеси вакуумного газойля и горючего сланца, при этом содержание нафтената кобальта в каталитической добавке от 10 до 100 мас.%, а гексакарбонил молибдена - от 0 до 90 мас.%, гомогенизацию полученной смеси в перемешивающем устройстве при температуре не ниже 60°C до получения однородной смеси, гидрирование при температурах 300-550°C в течение 0,05-6 ч с избыточным давлением H2, при объемном соотношении H2:полученная смесь от 2:1 до 20:1, термоэкстракцию полученного продукта в течение 0,5-6 ч с использованием растворителя в количестве 1-20 л на 1 кг полученной смеси, отделение экстракта от сухого остатка и упаривание жидкой части. Технический результат – упрощение технологии за счет исключения стадии термического разложения сланца, уменьшение количества катализатора при одновременном высоком выходе светлых нефтепродуктов не менее 20%, способ обеспечивает снижение содержания серы. 5 з.п. ф-лы, 5 пр.

Изобретение относится к способу получения альдегидов гидроформилированием с модификацией лигандов ацетализацией. Предлагаемый способ включает следующие стадии:- смешивание в автоклаве этилового спирта (А), ацетилацетоната дикарбонила родия Rh(acac)(CO)2 (Б), при соотношении Б:А от 1:6000 до 1:10000 в массовых долях, лиганда, содержащего остаток ароматического фосфина и по меньшей мере две гидроксильные группы (В), при соотношении В:Б от 1:1 до 5:1 в мольных долях, линейного олефина ряда С4-С20, (Г) при соотношении Г:Б от 500:1 до 5000:1 в мольных долях и катионита в кислой форме (Д), взятого в 10-20-кратном избытке по отношению к лиганду (В);- создание в автоклаве давления синтез-газа (СО/Н2=1:1) 0,1-10 МПа, нагрев смеси до 30-120°C, при этом синтез ведут при перемешивании магнитной мешалкой при 500-1000 об/мин в течение 3-10 часов с образованием альдегида и каталитического комплекса родия с объемным лигандом;- отделение катионита посредством фильтрации и отделение каталитического комплекса родия с объемным лигандом посредством мембранной нанофильтрации от смеси альдегида с растворителем с последующим упариванием растворителя. Также предлагаемое изобретение относится к способу выделения комплекса родия с лигандом (В) из каталитического комплекса родия с объемным лигандом, полученного в процессе гидроформилирования, заключающемуся в разложении объемного лиганда минеральными кислотами в массовом соотношении кислота:лиганд = 1:19. Образование объемного лиганда в процессе гидроформилирования позволяет проводить эффективное разделение каталитического комплекса от продукта – альдегида. 2 н. и 3 з.п. ф-лы, 3 пр.
Изобретение относится к способу получения синтетической нефти из твердых горючих сланцев. Способ получения высококачественной синтетической нефти из горючих сланцев включает: предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей через сита до фракций до 0,5 мм и сушку при температуре 80-150°C в течение 1-5 суток; смешивание полученного горючего сланца с вакуумным газойлем в массовых соотношениях от 1:10 до 10:1; введение каталитической добавки, включающей нафтенат кобальта и гексакарбонил молибдена из расчета 0,5-25 г каталитической добавки на 1 кг смеси газойля и горючего сланца, при этом содержание нафтената кобальта в каталитической добавке от 10 до 100 мас. %, а гексакарбонил молибдена - от 0 до 90 мас. %; гомогенизацию полученной смеси в перемешивающем устройстве при температуре не ниже 60°C до получения однородной смеси; гидрирование при температурах 300-550°C в течение 0,05-6 часов с избыточным давлением Н2, при объемном соотношении Н2 : полученная смесь от 2:1 до 20:1; термоэкстракцию полученного продукта в течение 0,5-6 часов с использованием растворителя в количестве 1-10 л на 1 кг полученной смеси; отделение экстракта от сухого остатка и упаривание жидкой части. Технический результат - способ обеспечивает выход светлых фракций и уменьшение содержания сернистых соединений. 4 з.п. ф-лы, 3 пр.
Изобретение относится к способу обессеривания сланцевой нефти и к каталитической окислительной композиции, используемой в данном способе. Способ включает смешивание сланцевой нефти в органическом растворителе, при этом на одну часть сланцевой нефти берут не менее 9 частей органического растворителя, окисление полученной смеси каталитической окислительной композицией, включающей пероксид водорода концентрацией не менее 50%, соль, выбранную из молибдата натрия, вольфрамата натрия, ванадила сульфата, и кислоту, для проведения реакции окисления при следующем соотношении в мольных долях: соль, выбранная из молибдата натрия, вольфрамата натрия, ванадила сульфата : сера в нефти = 1:500 до 1:50, пероксид водорода : сера в нефти = 2:1 до 6:1, кислота : сера в нефти = 1:5 до 5:1. При этом на одну часть каталитической окислительной композиции берут от 10 до 500 частей полученной смеси, причем полученную смесь обрабатывают при постоянном ультразвуковом воздействии мощностью не менее 300 Вт в течение 2-6 ч, после чего удаляют растворитель и проводят термокрекинг полученной смеси при 300-350°С от 3-х до 6 часов. Предлагаемые объекты позволяют достичь более высокой степени удаления серы. 2 н. и 10 з.п. ф-лы, 3 пр.

 


Наверх