Патенты автора Митяшкин Олег Александрович (RU)

Изобретение относится к способам изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий. Осуществляют нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов. Нагрев заготовок проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева с заданной номинальной мощностью и частотой в зависимости от диаметра заготовки. В результате изготавливают проволоку единым куском без сварных соединений с однородной, мелкозернистой структурой, при этом повышается прочность и пластичность проволоки, снижается анизотропия механических свойств по длине и сечению проволоки. 3 з.п. ф-лы, 2 ил., 2 табл., 13 пр.

Изобретение относится к способам изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий. Осуществляют нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов. Деформацию заготовки проводят при температуре Тз=(450-850)°С с контролем поля допуска температуры деформации ±10°С, при скорости деформации (25-100) м/мин и степени деформации μ=(10-50)% за один проход, где - μ=(d2i-d2(i+1))/d2i×100, di и d(i+1) - диаметры проволоки до и после деформации на i-м проходе. Нагрев заготовок до этой температуры проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева с заданной номинальной мощностью и частотой в зависимости от диаметра заготовки. В результате изготавливают проволоку единым куском без сварных соединений с однородной мелкозернистой структурой, при этом повышается прочность и пластичность проволоки, снижается анизотропия механических свойств по длине и сечению проволоки. 3 з.п. ф-лы, 21 пр., 2 табл., 2 ил.

Изобретение относится к способам изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий. Осуществляют нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов. Деформацию заготовки проводят при температуре Тз=(450-850)°С, при скорости деформации (25-100) м/мин и степени деформации μ=(10-50)% за один проход, где - μ=(d2i-d2(i+1))/d2i×100, di и d(i+1) - диаметры проволоки до и после деформации на i-м проходе. Нагрев заготовок до этой температуры проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева с заданной номинальной мощностью и частотой в зависимости от диаметра заготовки. В результате изготавливают проволоку единым куском без сварных соединений с однородной, мелкозернистой структурой, при этом повышается прочность и пластичность проволоки, снижается анизотропия механических свойств по длине и сечению проволоки. 3 з.п. ф-лы, 2 ил., 2 табл., 17 пр.

Изобретение относится к способам изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий. Осуществляют нагрев заготовки и деформацию заготовки путем волочения или прокатки ее в несколько проходов. Деформацию заготовки проводят при температуре ТЗ=(450-850)°С при скорости деформации (25-100) м/мин. Нагрев заготовок до этой температуры проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева с заданной номинальной мощностью и частотой в зависимости от диаметра заготовок. В результате изготавливают проволоку единым куском без сварных соединений с мелкозернистой структурой, при этом повышается прочность и пластичность проволоки, снижается анизотропия механических свойств по длине и сечению проволоки. 3 з.п. ф-лы, 2 табл., 17 пр., 2 ил.

Изобретение относится к металлургии, а именно к области функциональных металлических сплавов на основе титана, обладающих повышенной прочностью, упругостью и пластичностью. Заготовка для изготовления упругих элементов из сплава на основе титана, содержащего, мас.%: алюминий 3,85-4,05, молибден 4,5-5,5, ванадий 5,05-5,5, железо ≤0,5, углерод ≤0,1, водород ≤0,015, кислород ≤0,15, азот ≤0,05, кремний ≤0,15, цирконий 0,35-0,5, титан - остальное. При этом сплав имеет равномерную, мелкодисперсную микроструктуру мартенситного типа с размером зерен (1-5) мкм, по границам которых расположены глобулярные частицы первичной α-фазы. Энергоемкость заготовки по параметру τ2/G составляет более 20, а параметру τ2/ρG - более 4,7, где τ - наибольшее касательное напряжение, МПа, G - модуль упругости при сдвиге, МПа, ρ - плотность, г/см3. Сплав характеризуется высокими значениями предела прочности на кручение и предела прочности на разрыв в диапазоне температур от 20 до 350°С. Заготовка для изготовления упругих элементов имеет высокую энергоемкость. Повышается безопасность и надежность работы упругих элементов. 1 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к способам обработки титановых сплавов давлением, содержащих алюминий, ванадий, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования, используемой для аддитивной технологии. Способ включает нагрев и деформацию заготовки путем волочения или прокатки. Нагрев заготовки проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева в зависимости от диаметра заготовки, а деформацию заготовки осуществляют при температуре Тз=(450-850)°С с контролем допуска температуры нагрева заготовки ΔТ=±10°С. Приведены параметры установок индукционного нагрева в зависимости от диаметра заготовки. Повышается качество изготовленной проволоки, ее прочность и пластичность, снижаются затраты на изготовление. 3 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к металлургии, а именно к области ультразвуковых технологических систем различного назначения, и может быть использовано для создания ультразвуковых электродов, обладающих высоким ресурсом работы. Сплав на основе титана, содержащий, мас. %: алюминий 5,8-8,0; молибден 2,8-3,8; цирконий 0,6-0,9; кремний 0,20-0,40; железо ≤0,3; кислород ≤0,15; углерод ≤0,1; водород ≤0,015; азот ≤0,05; титан остальное. Сплав имеет равномерную, мелкодисперсную микроструктуру с размером зерен (0,5-5,0) мкм, содержащую равноосную α-фазу в количестве (40-80) % в трансформированной β-матрице без наличия непрерывной сети α-фазы на границах β зерен. Предел прочности на разрыв не менее 1200 МПа при соотношении параметров σ0,2/σB не менее 0,9, где σ0,2 - предел текучести, МПа, σB - предел прочности, МПа. Расширяется ультрачастотный диапазон работы волновода в области более высоких частот. Повышается безопасность работы ультразвуковых волноводов, а также качество выполняемых работ ультразвуковыми электродами, обладающими повышенным ресурсом работы в области высокого ультрачастотного диапазона. 1 з.п. ф-лы, 4 табл.

Изобретение относится к металлургии, а именно Сплав на основе титана для изготовления волноводов высокоамплитудных акустических систем. Сплав на основе титана для изготовления волноводов высокоамплитудных акустических систем, содержит, мас.%: алюминий 5,8-8,0, молибден 2,8-3,8, цирконий 2,1-3,0, кремний 0,20-0,40, железо ≤0,3, кислород ≤0,15, углерод ≤0,1, водород ≤0,015, азот ≤0,05, титан - остальное, при этом он имеет равномерную, мелкодисперсную микроструктуру с размером зерна (0,5-5,0) мкм, содержащую равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без непрерывной сетки α-фазы на границах β зерен. Расширяется ультрачастотный диапазон работы волновода в области более высоких частот, повышается безопасность работы ультразвуковых волноводов. 1 з.п. ф-лы, 4 табл.

Изобретение относится к металлургии, а именно к ультразвуковым технологическим системам, и может быть использовано для создания ультразвуковых электродов, обладающих высоким ресурсом работы. Заготовка волновода высокоамплитудных акустических систем из сплава на основе титана, содержащего, мас.%: алюминий 5,8-8,0, молибден 2,8-3,8, цирконий 2,1-3,0, кремний 0,20-0,40, железо ≤0,3, кислород ≤0,15, углерод ≤0,1, водород ≤0,015, азот ≤0,05, титан - остальное, при этом она имеет равномерную мелкодисперсную микроструктуру с размером зерна 0,5-5,0 мкм, содержащую равноосную α-фазу в количестве 40-80% в трансформированной β-матрице без непрерывной сетки α-фазы на границах β зерен. Способ получения заготовки волновода, характеризующийся тем, что осуществляют многоэтапную ковку заготовки, причем этапы ковки, проводимые после третьего этапа, повторяют до получения требуемой микроструктуры. Расширяется ультрачастотный диапазон работы волновода в области более высоких частот. Повышается безопасность работы ультразвуковых волноводов. 2 н. и 3 з.п. ф-лы, 4 табл.

Изобретение относится к способам обработки титановых сплавов давлением может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования. Способ включает нагрев и деформацию заготовки путем волочения или прокатки. Нагрев заготовки проводят индукционным методом с использованием одного, двух или трех устройств индукционного нагрева в зависимости от диаметра заготовки, а деформацию заготовки осуществляют при степени деформации заготовки μ=(10-50)% за один проход. Приведены параметры устройств индукционного нагрева в зависимости от диаметра заготовки. Снижается продолжительность полного цикла производства проволоки, повышается прочность и пластичность проволоки. 3 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к способам обработки титановых сплавов давлением, содержащих алюминий, ванадий, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования, используемой для аддитивной технологии. Способ включает нагрев и деформацию заготовки путем волочения или прокатки. Нагрев заготовки проводят индукционным методом с использованием одного, двух или трех устройств индукционного нагрева в зависимости от ее диаметра, а деформацию заготовки осуществляют при температуре Тз=(450-850)°С с контролем допуска температуры деформации, равным ±10°С, при степени деформации заготовки μ=(10-50)% за один проход. Приведены параметры установок индукционного нагрева в зависимости от диаметра заготовки. Снижается продолжительность полного цикла производства проволоки, повышается прочность и пластичность проволоки. 3 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к области обработки титановых сплавов давлением. Снижение продолжительности полного цикла производства проволоки, возможность получения проволоки единым куском без сварных соединений, повышение прочности и пластичности титановой проволоки из (α+β)-титанового сплава, получение однородной, мелкозернистой структуры сплава, снижение анизотропии механических свойств по длине и сечению проволоки обеспечивается за счет того, производят нагрев заготовки и деформацию, при этом деформацию проводят при регламентированной скорости деформации и степени деформации за один проход при температуре Тз=(450-850)°С, а нагрев заготовок до температуры Тз производят индукционным методом посредством одной, двух или трех установок индукционного нагрева с регламентированной номинальной мощностью и частотой. 3 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к области обработки титановых сплавов давлением. Способ обеспечивает снижение продолжительности полного цикла производства проволоки, возможность получения проволоки единым куском без сварных соединений, повышение прочности и пластичности титановой проволоки из (α+β)-титанового сплава, получение однородной, мелкозернистой структуры сплава, снижение анизотропии механических свойств по длине и сечению проволоки. Обеспечивается за счет того, что осуществляют нагрев и деформацию заготовки путем волочения или прокатки в несколько проходов, согласно изобретению деформацию заготовки проводят при температуре Тз=(450-850)°С, а нагрев заготовок до этой температуры производят индукционным методом посредством одной, двух или трех установок индукционного нагрева с регламентированными номинальной мощностью и частотой. 3 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к области обработки титановых сплавов давлением. Повышение качества проволоки из (α+β)-титанового сплава для аддитивной технологии, снижение затрат на ее изготовление обеспечивается за счет снижения продолжительности полного цикла производства проволоки. Получают проволоку из (α+β)-титанового сплава единым куском без сварных соединений, с повышенными прочностью и пластичностью, с однородной, мелкозернистой структурой сплава, при снижении анизотропии механических свойств по длине и сечению проволоки. Способ включает нагрев заготовки и деформацию путем волочения или прокатки в несколько проходов. На первом проходе проводят удаление поверхностного слоя проволоки без нагрева и деформации, на последующих проходах проводят деформацию с нагревом заготовок (Тз) индукционным методом, используя одну, или две, или три установки с регламентированной номинальной мощностью и частотой, деформацию проводят при регламентированных температуре, скорости деформации и степени деформации заготовки за один проход. 3 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к способам обработки титановых сплавов давлением и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов. Деформацию заготовки путем волочения или прокатки проводят при нагреве волок или роликов (Тв) до температуры Тв=(300-650)°С, а скорость деформации (V) заготовки выбирают на каждом проходе в зависимости от диаметра (d) заготовки: V = (2-10) м/мин для диаметра d = (от 8,0 до 7,0) мм, V = (10-15) м/мин для диаметра d = (от менее 7,0 до 5,0) мм, V = (15-20) м/мин для диаметра d = (от менее 5,0 до 4,0) мм, V = (20-30) м/мин для диаметра d = (от менее 4,0 до 3,0) мм, V = (30-40) м/мин для диаметра d = (от менее 3,0 до 2,0) мм, V = (40-60) м/мин для диаметра d = (от менее 2,0 до 1,6) мм. Получают проволоку единым куском без сварных соединений с высокой прочностью и пластичностью. Повышается качество проволоки. 2 з.п. ф-лы, 2 ил., 1 табл., 5 пр.

Изобретение относится к способам обработки титановых сплавов и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов. Деформацию заготовки путем волочения или прокатки проводят при нагреве заготовки (Тз) до температуры Тз=300-635°С и нагреве волок или роликов (Тв) до температуры Тв=300-650°С. Скорость деформации (V) заготовки выбирают на каждом проходе в зависимости от диаметра (d) заготовки: V=(2-10) м/мин для диаметра d=(от 8,0 до 7,0) мм, V=(10-15) м/мин для диаметра d=(от менее 7,0 до 5,0) мм, V=(15-20) м/мин для диаметра d=(от менее 5,0 до 4,0) мм, V=(20-30) м/мин для диаметра d=(от менее 4,0 до 3,0) мм, V=(30-40) м/мин для диаметра d=(от менее 3,0 до 2,0) мм, V=(40-60) м/мин для диаметра d=(от менее 2,0 до 1,6) мм. Получают проволоку единым куском без сварных соединений с высокой прочностью, пластичностью и низкой анизотропией механических свойств по длине проволоки. Повышается качество проволоки. 2 з.п. ф-лы, 2 ил., 1 табл., 7 пр.

Изобретение относится к области металлургии, в частности к способам обработки титановых сплавов, и может быть использовано при получении заготовок с энергоемкой структурой, повышенной прочностью, упругостью и пластичностью. Способ получения заготовки для изготовления упругих элементов, выполненной из сплава на основе титана, содержащего, мас.%: алюминий 1,2-4,5, молибден 3,5-6,5, ванадий 3,0-6,0, железо ≤0,5, углерод ≤0,3, водород ≤0,03, кислород ≤0,3, азот ≤0,15, кремний ≤0,5, цирконий ≤1,0 и титан – остальное, включает нагрев заготовки до температуры (920-1000)°С, выдержку при данной температуре в течение 70-140 минут, затем горячую деформацию со степенью деформации (90-95)% с последующим охлаждением в воду, холодную деформацию со степенью деформации (23-73)% и старение при температуре (390-490)°С в течение 2-8 часов с получением равномерной, мелкодисперсной микроструктуры орторомбического мартенсита α// с размером зерен (1-10) мкм, по границам которых расположены глобулярные частицы первичной α - фазы. Повышается безопасность и надежность работы упругих элементов, увеличивается срок эксплуатации упругих элементов, определяемый соотношениями за счет получения стабильной энергоемкой структуры сплава на основе титана. 3 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к области металлургии, а именно к функциональным заготовкам из сплава на основе титана, обладающим повышенной прочностью, упругостью и пластичностью. Заготовка для изготовления упругих элементов выполнена из сплава на основе титана, содержащего, мас.%: алюминий 1,2-4,5, молибден 3,5-6,5, ванадий 3,0-6,0, железо ≤0,5, углерод ≤0,3, водород ≤0,03, кислород ≤0,3, азот ≤0,15, кремний ≤0,5, цирконий ≤1,0. При этом сплав имеет равномерную, мелкодисперсную микроструктуру с размером зерен (1-10) мкм орторомбического мартенсита α//, по границам которых расположены глобулярные частицы первичной α-фазы. Заготовка характеризуется стабильной энергоемкой структурой при высоком значении предела прочности на разрыв σB, максимальных касательных напряжениях на кручение τ в диапазоне температур от 20°С до 350°С. 2 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к способам обработки титановых сплавов давлением и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов. Нагрев заготовки проводят индукционным методом на установках с номинальной мощностью 50-80 кВт и частотой 40-80 кГц для заготовки диаметром от 8,0 до 4,0 мм и с номинальной мощностью 10-40 кВт и частотой 300-500 кГц для заготовок диаметром от менее 4,0 до 1,6 мм. Деформацию заготовки путем волочения или прокатки проводят при нагреве заготовки (Тз) до температуры Тз=300-635°С и нагреве волок или роликов (Тв) до температуры Тв=300-650°С. Скорость деформации (V) заготовки выбирают на каждом проходе в зависимости от диаметра (d) заготовки: V=(2-10) м/мин для диаметра d=(от 8,0 до 7,0) мм, V=(10-15) м/мин для диаметра d=(от менее 7,0 до 5,0) мм, V=(15-20) м/мин для диаметра d=(от менее 5,0 до 4,0) мм, V=(20-30) м/мин для диаметра d=(от менее 4,0 до 3,0) мм, V=(30-40) м/мин для диаметра d=(от менее 3,0 до 2,0) мм, V=(40-60) м/мин для диаметра d=(от менее 2,0 до 1,6) мм. Получают проволоку единым куском без сварных соединений с высокой прочностью и пластичностью и низкой анизотропией механических свойств по длине проволоки. Повышается качество проволоки. 2 з.п. ф-лы, 2 ил., 1 табл., 9 пр.

Изобретение относится к способам обработки титановых сплавов и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев и деформацию заготовки путем волочения или прокатки в несколько проходов. Деформацию заготовок проводят путем волочения или прокатки при нагреве заготовок (Тз) до температуры Тз=300-635°С. Скорость деформации (V) заготовки выбирают на каждом проходе в зависимости от диаметра (d) заготовки: V=(2-10) м/мин для диаметра d=(от 8,0 до 7,0) мм, V=(10-15) м/мин для диаметра d=(от менее 7,0 до 5,0) мм, V=(15-20) м/мин для диаметра d=(от менее 5,0 до 4,0) мм, V=(20-30) м/мин для диаметра d=(от менее 4,0 до 3,0) мм, V=(30-40) м/мин для диаметра d=(от менее 3,0 до 2,0) мм, V=(40-60) м/мин для диаметра d=(от менее 2,0 до 1,6) мм. Получают проволоку единым куском без сварных соединений с высокой прочностью, пластичностью и низкой анизотропией механических свойств по длине проволоки. Повышается качество проволоки. 2 з.п. ф-лы, 2 ил., 1 табл., 5 пр.

Изобретение относится к термомеханической обработке сплавов на основе титана с (α+β) структурой и может быть использовано для создания заготовок, имеющих высокую энергоемкость, мелкодисперсную микроструктуру с размером зерна (0,5-5,0) мкм, для изделий, испытывающих переменные механические нагрузки. Способ получения заготовки из (α+β) титановых сплавов для изделий, испытывающих переменные механические нагрузки, включает многоэтапную ковку заготовки. На первом и третьем этапах ковки заготовку из титанового сплава нагревают до температуры T1, которая выше температуры полного полиморфного превращения Tβ+40≤T1≤Tβ+130, где Тβ - температура фазового альфа-бета перехода, на втором этапе нагревают заготовку из титанового сплава до температуры Т2, которая ниже полиморфного превращения Тβ-60≤Т2≤Тβ. На всех этапах ковку проводят с деформацией 1,1-1,5 в течение 10-20 мин при вращении заготовки вокруг своей оси по схеме, включающей один полный оборот заготовки с поворотом на 90°, второй полный оборот с поворотом заготовки на 45°, третий полный оборот с поворотом заготовки на 22°, причем после каждого этапа проводят закалку или охлаждение заготовки в воду, при этом после третьего этапа все последующие этапы ковки проводят при нагреве заготовки до температуры Тβ-60≤Т2≤Тβ и с деформацией 1,1-1,6 в течение 10-20 мин при повороте заготовки вокруг своей оси на 90°. Этапы ковки, проводимые после третьего этапа, повторяют до получения равномерной, мелкодисперсной микроструктуры с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве 40-80% в трансформированной β-матрице без образования непрерывной сетки α-фазы на границах β зерен, затем полученную заготовку подвергают отжигу при температуре (830-870)°С в течение 40-80 минут и охлаждают. Заготовки характеризуются высокими значениями механических свойств и энергоемкости. 3 табл., 5 пр.

Изобретение относится к области ультразвуковых технологических систем различного назначения и может быть использовано для создания сплава для изготовления ультразвуковых электродов, обладающих высоким ресурсом работы. Сплав на основе титана содержит, мас. %: алюминий 5,8-8,0, молибден 2,8-3,8, цирконий 2,1-3,0, кремний 0,20-0,40, железо ≤0,3, кислород ≤0,15, углерод ≤0,1, водород ≤0,015, азот ≤0,05, титан – остальное. Сплав имеет равномерную, мелкодисперсную микроструктуру с размером глобулей (0,5-5,0) мкм, содержащую равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сети α-фазы на границах β-зерен, и предел прочности на разрыв не менее 1200 МПа при соотношении параметров σ0,2/σВ не менее 0,9, где σ0,2 - предел текучести, МПа, σВ - предел прочности, МПа. Расширяется ультрачастотный диапазон работы волновода в области более высоких частот. 4 табл., 5 пр.

Изобретение относится к области ультразвуковых технологических систем различного назначения и может быть использовано для создания ультразвуковых электродов, обладающих высоким ресурсом работы. Сплав на основе титана для ультразвуковых волноводов содержит, мас. %: алюминий 5,8-8,0, молибден 2,8-3,8, цирконий 0,6-0,9, кремний 0,20-0,40, железо ≤0,3, кислород ≤0,15, углерод ≤0,1, водород ≤0,015, азот ≤0,05, титан – остальное. При этом он имеет равномерную, мелкодисперсную микроструктуру с размером зерна 0,5-5,0 мкм, содержащую равноосную α-фазу в количестве 40-80% в трансформированной β-матрице без непрерывной сети α-фазы на границах β зерен. Расширяется ультрачастотный диапазон работы волновода в область более высоких частот. Повышается безопасность работы ультразвуковых волноводов и качество выполняемых работ ультразвуковыми электродами, обладающими повышенным ресурсом работы в области высокого ультрачастотного диапазона. 1 з.п. ф-лы, 4 табл.

Изобретение относится к метрологии, в частности к способам определения механических и физических свойств титановых сплавов. Способ выбора титанового сплава для ультразвукового волновода заключается в том, что определяют механические и физические свойства и структуру сплавов, при этом определяют предел прочности на разрыв σВ, предел текучести σ0,2, скорость звука в двух взаимно перпендикулярных направлениях и выбирают сплав с пределом прочности на разрыв не менее 1200 МПа, отношением σ0,2/σВ в пределах 0,9-0,95, скоростью звука не менее 6150 м/с в обоих направлениях и различием скоростей не более чем на 50 м/с. Технический результат - определение и обоснование выбора рационального сочетания физико-механических свойств титанового сплава и его структуры для ультразвуковых волноводов. 2 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к получению заготовки из (α+β)-титановых сплавов для изделий, испытывающих переменные механические нагрузки, и может быть использовано для изготовления изделий, имеющих высокую энергоемкость. Способ получения заготовки из (α+β)-титановых сплавов для изделий, испытывающих переменные механические нагрузки, включает многоэтапную ковку заготовки. На первом и третьем этапах ковки заготовку из титанового сплава нагревают до температуры T1, которая выше температуры полного полиморфного превращения Tβ+40≤T1≤Tβ+130, где Тβ - температура фазового альфа-бета перехода. На втором этапе нагревают заготовку из титанового сплава до температуры Т2, которая ниже полиморфного превращения Тβ-60≤Т2≤Тβ. На всех этапах ковку проводят с деформацией 1,1-1,5 в течение 10-20 мин при вращении заготовки вокруг своей оси по схеме, включающей один полный оборот заготовки с поворотом на 90°, второй полный оборот с поворотом заготовки на 45°, третий полный оборот с поворотом заготовки на 22°. После каждого этапа проводят закалку или охлаждение заготовки в воде. При этом после третьего этапа все последующие этапы ковки проводят при нагреве заготовки до температуры Тβ-60≤Т2≤Тβ и с деформацией 1,1-1,6 в течение 10-20 мин при повороте заготовки вокруг своей оси на 90°. Этапы ковки, проводимые после третьего этапа, повторяют до получения равномерной, мелкодисперсной микроструктуры с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве 40-80% в трансформированной β-матрице без образования непрерывной сетки α-фазы на границах β зерен, затем полученную заготовку подвергают отжигу при температуре (830-870)°С в течение 40-80 мин и охлаждают. Полученные заготовки имеют высокие значения предела прочности и предела текучести. 3 табл.

Изобретение относится к способам оценки энергоемкости титановых сплавов по их механическим свойствам и определения по полученным величинам пригодности данных сплавов для изготовления упругих элементов. Сущность: осуществляют определение параметров σ0,2/σB, а в качестве оптимального соотношения значений для оценки энергоемкости сплава выбирают следующие значения соотношений указанных параметров: τ32/G более 17; τ32/ρG более 3,7; σ0,2/σВ в пределах 0,89-0,96; σВ не менее 1500 МПа; τ3 не менее 900 МПа, где σ0,2 - предел текучести, МПа; σB - предел прочности, МПа; τ3 - максимальное касательное напряжение, МПа; G - модуль упругости при сдвиге, МПа; ρ - плотность, г/см3. Технический результат заключается в упрощении оценки упругих свойств титановых сплавов и в повышении достоверности оценки энергоемкости титановых сплавов, прошедших технологические режимы деформации и термообработки. 2 ил., 3 табл.

Изобретение относится к способам оценки энергоемкости титановых сплавов по их механическим свойствам и определение, по полученным величинам, пригодности данных сплавов для изготовления упругих элементов. Сущность: определяют параметр σ0,2/σB, и выбирают сплав с: параметром τ32/G более 17, параметром τ32/ρG более 3,7, отношением σ0,2/σB в пределах 0,89-0,96, пределом прочности на разрыв σB не менее 1500 МПа, максимальным касательным напряжением при кручении τ3 не менее 900 МПа, мелкодисперсной микроструктурой с размером глобулей 1-10 мкм мартенситного типа с меньшими субструктурными составляющими на периферии с наличием по границам отдельных зерен глобулярных частиц первичной α-фазы, где σ0,2 - предел текучести, МПа; G - модуль упругости при сдвиге, МПа; ρ - плотность, г/см3. Технический результат: упрощение оценки упругих свойств титановых сплавов и повышение достоверности оценки энергоемкости титановых сплавов, прошедших технологические режимы деформации и термообработки. 3 табл., 2 ил.

Изобретение относится к методам определения механических и физических свойств титановых сплавов и определение по полученным величинам пригодности данных сплавов в качестве ультразвуковых волноводов. Способ выбора титанового сплава для ультразвукового волновода содержит этапы на которых определяют механические и физические свойства и структуру сплавов, при этом определяют предел прочности на разрыв σВ, предел текучести σ0,2, скорость звука в двух взаимно перпендикулярных направлениях и выбирают сплав с: пределом прочности на разрыв не менее 1200 МПа, отношением σ0,2/σВ в пределах 0,9-0,95, скоростью звука не менее 6150 м/с в обоих направлениях и различием скоростей не более чем на 50 м/с, мелкодисперсной микроструктурой с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сети α-фазы на границах β зерен. Технический результат – повышение работоспособности ультразвуковых волноводов для ультразвуковой сварки. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к способам обработки титановых сплавов давлением, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов. Нагрев заготовки проводят индукционным методом, причем для заготовки диаметром от 8,0 до 4,0 мм устанавливают номинальную мощность 50-70 кВт и частоту 40-80 кГц, а для заготовок диаметром от менее 4,0 до 0,4 мм устанавливают номинальную мощность 20-40 кВт и частоту 300-500 кГц. Деформацию заготовки путем волочения или прокатки проводят при нагреве заготовки до температуры Тз=300-635°C и нагреве волок или роликов до температуры Тв=300-650°C, а скорость деформации заготовки выбирают на каждом проходе в зависимости от диаметра заготовки. Деформацию заготовки проводят под контролем температуры волок или роликов и скорости деформации методом акустической эмиссии путем измерения в зоне пластического деформирования энергетического параметра, величина которого составляет не более 0,04×10-3 мВ2с. Получают проволоку без сварных соединений с высокими значениями прочности и пластичности. 2 з.п. ф-лы, 1 табл., 3 ил., 9 пр.

Область применения: изобретение относится к геофизическим исследованиям технического состояния нефтегазовых скважин и может быть использовано для обнаружения различных дефектов в нескольких колоннах скважин. Электромагнитный скважинный дефектоскоп содержит генераторную катушку индуктивности, измерительные катушки индуктивности и дополнительные измерительные катушки индуктивности, отнесенные на расстояние от генераторной катушки, блок электроники, при этом дополнительные измерительные катушки индуктивности удалены от генераторной катушки индуктивности на расстояние, обеспечивающее оптимальную рабочую зону влияния на них генераторной катушки индуктивности, которое выбирается из условия от 0,01 до 2L, и разнесены между собой по оси прибора на расстояние, выбираемое из условия от 0,01 до 2L, где L - длина основного зонда. Кроме того, каждая дополнительная измерительная катушка индуктивности в количестве одной или более штук установлена на отдельном магнитном сердечнике. Технический результат заявленного решения заключается в улучшении разрешающей способности дефектоскопа, повышении чувствительности к дефектам малого размера и точности определения их расположения за счет подбора оптимального расстояния расположения измерительной катушки от генераторной катушки для обеспечения рабочей зоны влияния генераторной катушки на измерительную. 2 н.п. ф-лы, 3 ил.

 


Наверх