Способ получения заготовки из титановых сплавов для изделий, испытывающих переменные механические нагрузки

Изобретение относится к термомеханической обработке сплавов на основе титана с (α+β) структурой и может быть использовано для создания заготовок, имеющих высокую энергоемкость, мелкодисперсную микроструктуру с размером зерна (0,5-5,0) мкм, для изделий, испытывающих переменные механические нагрузки. Способ получения заготовки из (α+β) титановых сплавов для изделий, испытывающих переменные механические нагрузки, включает многоэтапную ковку заготовки. На первом и третьем этапах ковки заготовку из титанового сплава нагревают до температуры T1, которая выше температуры полного полиморфного превращения Tβ+40≤T1≤Tβ+130, где Тβ - температура фазового альфа-бета перехода, на втором этапе нагревают заготовку из титанового сплава до температуры Т2, которая ниже полиморфного превращения Тβ-60≤Т2≤Тβ. На всех этапах ковку проводят с деформацией 1,1-1,5 в течение 10-20 мин при вращении заготовки вокруг своей оси по схеме, включающей один полный оборот заготовки с поворотом на 90°, второй полный оборот с поворотом заготовки на 45°, третий полный оборот с поворотом заготовки на 22°, причем после каждого этапа проводят закалку или охлаждение заготовки в воду, при этом после третьего этапа все последующие этапы ковки проводят при нагреве заготовки до температуры Тβ-60≤Т2≤Тβ и с деформацией 1,1-1,6 в течение 10-20 мин при повороте заготовки вокруг своей оси на 90°. Этапы ковки, проводимые после третьего этапа, повторяют до получения равномерной, мелкодисперсной микроструктуры с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве 40-80% в трансформированной β-матрице без образования непрерывной сетки α-фазы на границах β зерен, затем полученную заготовку подвергают отжигу при температуре (830-870)°С в течение 40-80 минут и охлаждают. Заготовки характеризуются высокими значениями механических свойств и энергоемкости. 3 табл., 5 пр.

 

Изобретение относится к области технологических процессов термомеханической обработки сплавов на основе титана с (α+β) структурой и может быть использовано для создания заготовок, имеющих высокую энергоемкость, мелкодисперсную микроструктуру с размером зерна (0,5-5,0) мкм, для изделий испытывающих переменные механические нагрузки.

Известно техническое решение, в котором проведены исследования титанового сплава, для использования в качестве волноводов высокоамплитудных акустических систем. Волновод испытывает высокочастотные переменные напряжения сжатия и растяжения. В данной работе исследовался промышленный сплав ПТ-3В (4,66 масс. % Al, 1,92 масс. % V) с исходной крупнозернистой структурой (200-400) мкм и ультромелкозернистой (УМЗ) структурой 0,37 мкм, полученной методом интенсивной пластической деформации - методом всестороннего прессования в интервале температур 1073-773 К. Данный сплав широко используется для изготовления акустических волноводов, ультразвуковых систем различного назначения. (Е.Н. Найденкин и др. «Титановый сплав ПТ-3В с ультрадисперсной структурой для волноводов высокоамплитудных акустических систем». Вопросы материаловедения, 2009 г. №4, стр15-19.). Выполнено сравнительное исследование структуры, механических и акустических свойств сплава ПТ-3В в крупнокристаллическом и ультрамелкозернистом состояниях. Методом всестороннего прессования в титановом сплаве ПТ-3В была сформирована однородная ультрамелкозернистой структура со средним размером элементов зеренносубзеренной структуры 0,37 мкм. В результате существенно повысились механические свойства исследуемого материала. Так, микротвердость ультрамелкозернистого сплава увеличивается примерно на 25%, а разрушение волноводов из этого материала происходит при подводимой мощности ультразвука в 1,5-2 раза большей по сравнению с волноводом из крупнозернистого сплава. Значительно увеличивается ресурс работы при многоцикловой нагрузке таких волноводов в условиях повышенной плотности мощности ультразвуковой системы.

Недостаток использования сплавов на основе титана ПТ-3В в качестве волновода заключается в недостаточном ресурсе работы в условиях повышенной частоты ультразвуковых колебаний (УЗК).

Традиционно упрочнение титановых сплавов достигается их легированием, термомеханической обработкой, т.е. за счет управления химическим составом и фазово-структурными превращениями. Новым эффективным способом повышения физико-механических свойств промышленных металлов и сплавов является создание в них ультрамелкозернистых (УМЗ) структур с использованием методов интенсивной пластической деформации (ИПД), которые позволяют достигать очень больших пластических деформаций при относительно низких температурах (обычно 0,3…0,4Тпл, К) в условиях высоких приложенных давлений. (Валиев Р.З, Александров И.В. Наноструктурные материалы, подвергнутые интенсивной пластической деформации. М.: Логос, 2000. - 272 с.). Проведенные исследования (Малыгин Г.А. Физика твердого тела. 6 (49), стр. 961-982, 2007 г.) показывают, что получение ультрамелкозернистой структуры со средним размером зерна менее 1 мкм в конструкционных сплавах позволяет, с одной стороны, значительно повысить их характеристики прочности, сопротивление усталости, износостойкость, с другой стороны, практическое применение таких материалов сдерживает рядом недостатков, к которым в первую очередь следует отнести пониженную термостабильность, ударную вязкость, циклическую трещиностойкость, повышенную чувствительность к концентраторам напряжений, а также порообразование при циклических нагрузках в зоне наибольших напряжений (приповерхностной зоне).

Известен способ получения заготовок, включающий нагрев заготовки (α+β) титанового сплава на (20-30)°С ниже температуры полиморфного превращения и последующее деформирование с различной степенью деформации (Патент 1225662 по заявке: 3576642 от 12.04.1983 г. МПК C21F 1/18).

Данный способ не позволяет получить необходимую макро- и микроструктуру в заготовке, что отрицательно сказывается на качестве получаемых изделий.

Известен способ штамповки заготовки из титановых сплавов, включающий по меньшей мере два перехода предварительной штамповки и окончательную штамповку, нагрев заготовки под каждый переход штамповки и охлаждение ее после каждого перехода, отличающийся тем, что нагрев заготовки под каждый переход предварительной штамповки осуществляют до температуры выше температуры начала полиморфного превращения, охлаждение заготовки после каждого перехода предварительной штамповки осуществляют до температуры ниже температуры конца полиморфного превращения, а окончательную штамповку производят в интервале температур начала полиморфного превращения и полного полиморфного превращения (Патент 2229952 по заявке: 2002130537 от 15.11.2002 г. МПК B21J 5/00). Данное техническое решение принято в качестве прототипа по способу ковки сплава на основе титана.

Данный способ не позволяет получить необходимую макро- и микроструктуру в заготовке, что отрицательно сказывается на качестве получаемых изделий.

Задачей данного технического решения является получения оптимальной структуры заготовки для изделий испытывающих циклические нагрузки.

В процессе решения поставленной задачи достигается технический результат заключающийся в снижении зернистости, получении мелкодисперсной микроструктуры с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сетки α-фазы на границах β зерен, с высокими значениями предела прочности на разрыв, qB, не менее 1200МПа, при соотношении параметров σ0,2B, не менее 0,9, где σ0,2 - предел текучести, МПа, σB - предел прочности, МПа.

Указанный технический результат достигается способом получения заготовки из (α+β)-титановых сплавов для изделий, испытывающих переменные механические нагрузки, включающий многоэтапную ковку заготовки, при этом на первом и третьем этапах ковки заготовку из титанового сплава нагревают до температуры T1, которая выше температуры полного полиморфного превращения Tβ+40≤T1≤Tβ+130, где Тβ - температура фазового альфа-бета перехода, на втором этапе нагревают заготовку из титанового сплава до температуры Т2, которая ниже полиморфного превращения Тβ-60≤Т2≤Тβ, на всех этапах ковку проводят с деформацией 1,1-1,5 в течение 10-20 мин при вращении заготовки вокруг своей оси по схеме, включающей один полный оборот заготовки с поворотом на 90°, второй полный оборот с поворотом заготовки на 45°, третий полный оборот с поворотом заготовки на 22°, причем после каждого этапа проводят закалку или охлаждение заготовки в воду, при этом после третьего этапа все последующие этапы ковки проводят при нагреве заготовки до температуры Тβ-60≤Т2≤Тβ и с деформацией 1,1-1,6 в течение 10-20 мин при повороте заготовки вокруг своей оси на 90°, а этапы ковки, проводимые после третьего этапа, повторяют до получения равномерной, мелкодисперсной микроструктуры с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве 40-80% в трансформированной β-матрице без образования непрерывной сетки α-фазы на границах β зерен, затем полученную заготовку подвергают отжигу при температуре (830-870)°С в течение 40-80 минут и охлаждают.

Известно, что наибольшее влияние на механические свойства оказывают такие параметры микроструктуры, как форма, размеры и объемное соотношение первичной и вторичной α-фазы. Используя интенсивную пластическую деформацию (ИПД) в основе которой лежит реализация больших деформаций в условиях высоких квазигидростатических давлений в титановых сплавах формируется субмикрокристаллическая (СМК) структура за счет сильной фрагментации и разориентации структурных единиц в ходе реализации ротационных мод деформации. Одним из методов формирования СМК-структур в массивных образцах из титановых сплавов, также относящихся к методам ИПД, является всесторонняя ковка, обычно сопровождаемая динамической рекристаллизацией в небольших поверхностных объемах заготовки. (Листвин Г.П., Саблина М.В. «Влияние условий деформации и термической обработки на формирование структуры и механические свойства полуфабрикатов из сплава ВТ6», Технология легких сплавов. 1989. №12. С. 55-59).

Нагрев заготовки на первом и третьем этапах ковки до температуры выше температуры начала полиморфного превращения обусловлен необходимостью достижения максимальной технологической пластичности сплава и формирования фрагментированной субструктуры с большеугловыми границами, сопровождающейся развитием динамической рекристаллизации по механизму Кана-Бюргерса, согласно которому зародышем рекристаллизации является субзерно, так и с развитием динамической рекристаллизации по механизму Бейли-Хирша, когда образование рекристаллизованных зерен происходит в виде «ожерелья» по границам исходных деформированных зерен. При этом для получения определенной доли зерен субмикронного размера в объемных заготовках важно сохранить их закалкой из β-области на первых этапах высокотемпературной термомеханической обработки (ВТМО). Далее сплав с такой микроструктурой состоящей из зерен субмикронного и микронного размера подвергнут всесторонней ковке при Т2, где Тβ-60≤Т2≤Тβ, с большой степенью деформации с целью измельчения зерна до (0,5-5,0) мкм и получения равновесной структуры α-фазы и вытянутой альфа в трансформированной β матрице.

Закалка или быстрое охлаждение заготовок после первых трех этапов ковки обусловлено необходимостью измельчения зерна не только деформацией, но и фазовым наклепом. Нагрев заготовки на этапах ковки до температуры начала полиморфного превращения и полного полиморфного превращения обусловлен тем, что в этом интервале достигается эффект двойного измельчения зерна пластической деформацией и фазовой перекристаллизацией. Многократное термоциклирование и совмещение операций деформирования, фазовой перекристаллизации и рекристаллизации позволяет получить оптимальную микроструктуру в изделии с высоким комплексом физико-механических свойств.

Повышение прочности сплава при циклических нагрузках в предлагаемом способе ковки сплава на основе титана для изделий испытывающий механические циклические нагрузки, достигается за счет создания разнозеренной структуры, имеющей повышенную сопротивляемость разрушению при циклических нагрузках изменяющихся с высокой частотой Сплав должен иметь не только УМЗ структуру, он должен иметь также разнозеренную структуру максимально противостоящую разрушению при воздействии на материал высокочастотных ультразвуковых колебаний.

При разработке структуры сплава авторами были использованы основные положения механики разрушения твердых тел. Рассматривался механизм разрушения применительно к титановому сплаву имеющего различную структуру и подвергаемого циклическим напряжениям сжатия и растяжения с высокой частотой. Прежде всего, необходимо отметить, что ультразвуковые колебания в волноводе создают зоны сжатия и растяжения, величина данных зон напряжений в материале зависит от параметров УЗК, частоты и амплитуды. С позиции механики разрушения, процесс разрушения волновода из титанового сплава в результате действия ультразвуковых колебаний многостадиен. Он начинается в дефектных местах кристаллической решетки, где имеются нарушения ее периодичности, и проходит последовательно следующие стадии: скопление дефектов, приводящее к локальной концентрации напряжений; образование зародышевых микротрещин, т.е. разрывов оплошностей кристаллической решетки в отдельных участках; развитие и объединение зародышевых микротрещин вплоть до образования магистральных трещин разрушения; разрушение волновода на несколько частей.

Свойства структуры сплава должны быть такими, что бы максимально сопротивляться разрушению на каждой из указанных стадии. Очевидно, что на стадии скопления дефектов, сплав с высокой зернистостью 200-400 мкм, имеющий больший размер кристаллитов, и больший размер границ между отдельными кристаллами будет противостоять УЗК лучше, чем сплав с УМЗ структурой имеющий значительно больше дефектов в структуре. Но стадия образования зародышевых микротрещин, т.е. разрывов сплошностей кристаллической решетки в отдельных участках, в сплаве с УМЗ структурой от действия ультразвуковых колебаний будет проходить значительной дольше, чем в сплавах имеющих большой размер зерна. Практически данная стадия и определяет работоспособность сплава испытывающего переменные механические нагрузки. Это обусловлено способностью УМЗ структуры противостоять напряжениям, возникающим в материале при УЗК, микрообъемы которого периодически сжимаются и растягиваются. Чтобы получить разрыв сплошностей в крупнозернистом сплаве, размером 400 мкм, достаточно транскристаллитного разрушения одного крупного зерна, или интеркристаллитного разрушения границ двух зерен, тогда как в сплаве с УМЗ структурой для этого микроразрыву потребуется пройти 1000 зерен и межзеренных границ. Следовательно, и энергии на получение такого разрыва сплошностей потребуется в 1000 раз больше. Размеры разрывов сплошностей в крупнозернистом сплаве будут на два-три порядка больше, чем в сплаве с УМЗ структурой, а, следовательно, их подрастание до микротрещин и выход на поверхность будет происходить быстрее.

Иной характер разрушения титанового сплава происходит в сплаве имеющем разномерную, мелкодисперсную микроструктуру с размером зерна (0,5-5,0) мкм, содержащую равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сети α-фазы на границах β зерен.

На стадии скопления дефектов, в которой происходит увеличение локальной концентрации напряжений, сплав с разнозеренной структурой имеющий в структуре субмелкие и мелкие зерна будет противостоять значительно дольше, чем сплав, имеющий УМЗ структуру. Это объясняется тем, что структура сплава имеет меньшую дефектность. На второй стадии разрушения, зародившиеся микроразрывы на субмелких зернах, при своем подрастании будут тормозится на мелких зернах, в то время как на сплавах с УМЗ период торможения будет значительно меньше, так как зародившийся микроразрыв соизмерим с размером соседнего зерна. Наличие в структуре зерен с различным размером из различных фаз, имеющих различные параметры кристаллических решеток, будут создавать в сплаве границы зерен с различной степенью напряженности, что создаст дополнительное препятствие при развитии микротрещин. Таким образом, разнозернистая структура сплава имеет большую способность сопротивляться разрушению на каждой указанной ранее стадии механизма разрушения.

Таким образом, разнородная мелкозернистая микроструктура в титановых сплавах позволяет повысить технологические свойства изделий из данного сплава, обеспечить высокие механические свойства. Пример реализации способа.

Реализация способа ковки была реализована в два этапа. На первом этапе изготавливались пять заготовок из титанового сплава с сплава α+β)-структурой. Использовали поковки из двухфазного титанового сплава имеющих различный состав химических элементов. Состав поковок приведен в таблице 1.

Ковку проводили по следующему режиму.

На первом этапе ковки нагревали заготовку до температуры выше температуры полного полиморфного превращения T1=1100°С, проводили ковку с деформацией 1,27 в течение 15 минут при вращении заготовки по схеме один полный оборот с поворотом каждый раз на 90°, второй полный оборот с поворотом заготовки каждый раз на 45°, третий полный оборот с поворотом заготовки каждый раз на 22°, после проведения ковки проводили закалку в воду. На втором этапе нагревали заготовку до температуры ниже температуры полиморфного превращения Т2=950°С, проводили ковку с деформацией 1,20 в течение 15 минут, при вращении заготовки по схеме, один полный оборот с поворотом каждый раз на 90°, второй полный оборот с поворотом заготовки каждый раз на 45°, третий полный оборот с поворотом заготовки каждый раз на 22°, после проведения ковки проводили быстрое охлаждение в воду. На третьем этапе нагревали заготовку до температуры выше температуры полиморфного превращения T1=1150°С, проводили ковку с деформацией 1,24 в течение 20 минут, при вращении заготовки по схеме, один полный оборот с поворотом каждый раз на 90°, второй полный оборот с поворотом заготовки каждый раз на 45°, третий полный оборот с поворотом заготовки каждый раз на 22°, после проведения ковки проводили закалку в воду. На следующих этапах нагревали заготовку до температуры ниже температуры полиморфного превращения Т2=950°С, проводили ковку с деформацией 1,50 в течение 5-10 минут, при вращении заготовки по схеме, один полный оборот с поворотом каждый раз на 90°, после истечения времени ковки, заготовку подогревали до необходимой температуры, и процесс ковки повторяли. Такой процесс проводили до получения необходимой структуры заготовки. После этого заготовку подвергали отжигу при температуре 870°С в течение 70 минут, затем заготовку охлаждали на воздухе.

В результате этого в заготовках номер 2, 3, 4 была получена разномерная, мелкодисперсная микроструктуру с размером зерна (0,5-5,0) мкм, содержащую равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сетки α-фазы на границах β зерен.

Исследования механических свойств на растяжение и кручение проводили на универсальной крутильно-разрывной машине МИ-40КУ совмещенной с ПК.

Предлагаемый способ получения титанового сплава позволяет получить оптимальную микроструктуру титанового сплава в изделии с высоким комплексом физико-механических свойств. Результаты исследований представлены в таблице 2.

Как видно из таблицы, способ ковки позволяет получить высокие физико-механические показатели титанового сплава временное сопротивление разрыву σв, условный предел текучести σ0,2 и относительное сужение ψ, относительное удлинение δ и структуру с размером зерна 0,5-5,0 мкм.

На втором этапе реализации способа ковки были определены оптимальные технологические режимы ковки. Оптимальные режимы определяли на сплаве №3 таблица 1. Результаты исследований приведены в таблице 3.

Анализ результатов таблицы 3 показывает, что технологические режимы, заявленные в способе ковки, являются оптимальными.

Заготовки, полученные описанным выше способом, имеют высокую энергоемкость, высокие технологические и механические свойства, разнозернистую мелкодисперсную микроструктуру, способную сопротивляться разрушениям. Заготовки могут быть использованы для изготовления изделий испытывающих переменные механические нагрузки, например в конструкциях летательных аппаратов.

Способ получения заготовки из (α+β) титановых сплавов для изделий, испытывающих переменные механические нагрузки, включающий многоэтапную ковку заготовки, отличающийся тем, что на первом и третьем этапах ковки заготовку из титанового сплава нагревают до температуры T1, которая выше температуры полного полиморфного превращения Tβ+40≤T1≤Tβ+130, где Тβ - температура фазового альфа-бета перехода, на втором этапе нагревают заготовку из титанового сплава до температуры Т2, которая ниже полиморфного превращения Тβ-60≤Т2≤Тβ, на всех этапах ковку проводят с деформацией 1,1-1,5 в течение 10-20 мин при вращении заготовки вокруг своей оси по схеме, включающей один полный оборот заготовки с поворотом на 90°, второй полный оборот с поворотом заготовки на 45°, третий полный оборот с поворотом заготовки на 22°, причем после каждого этапа проводят закалку или охлаждение заготовки в воду, при этом после третьего этапа все последующие этапы ковки проводят при нагреве заготовки до температуры Тβ-60≤Т2≤Тβ и с деформацией 1,1-1,6 в течение 10-20 мин при повороте заготовки вокруг своей оси на 90°, а этапы ковки, проводимые после третьего этапа, повторяют до получения равномерной, мелкодисперсной микроструктуры с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве 40-80% в трансформированной β-матрице без образования непрерывной сетки α-фазы на границах β зерен, затем полученную заготовку подвергают отжигу при температуре (830-870)°С в течение 40-80 минут и охлаждают.



 

Похожие патенты:
Изобретение относится к области металлургии и может быть использовано при получении полуфабрикатов из ниобиевых сплавов. Cпособ включает приготовление шихты из оксидов ниобия, молибдена и вольфрама в количествах, определяемых маркой сплава, и алюминия, взятого с избытком 1-15% от стехиометрического количества.

Изобретение относится к электропластической формообразующей обработке титан-никелевых сплавов для повышения их деформационной способности и эффекта памяти формы и может быть использовано в металлургии и машиностроении.

Изобретение относится к способу обработки поверхности сплава никелида титана. Поверхность сплава никелида титана сканируют лучом лазера с плотностью мощности луча 1,5-0,5⋅107 Вт/мм2, средней мощностью лазерного облучения 0,48-56,2 Вт, с частотой импульсов 10-200 кГц и скоростью сканирования луча лазера 100-2000 мм/с.

Изобретение относится к области металлургии, а именно к титановым композиционным материалам. Титановый композиционный материал содержит внутренний слой, содержащий технически чистый титан или титановый сплав, наружный слой, сформированный на по меньшей мере одной прокатываемой поверхности внутреннего слоя и имеющий химический состав, который отличается от химического состава внутреннего слоя, и промежуточный слой, сформированный между внутренним слоем и наружным слоем и имеющий химический состав, который отличается от химического состава внутреннего слоя.

Изобретение относится к способам обработки двухфазных титановых сплавов с альфа-бета-структурой. Способ термомеханической обработки заготовки из двухфазного альфа-бета-титанового сплава, включающий этапы, на которых проводят обработку заготовки при первой температуре обработки в диапазоне температур от температуры на 300°F (168°C) ниже температуры бета-перехода сплава до температуры на 30°F (16,8°C) ниже температуры бета-перехода сплава, охлаждение заготовки от первой температуры обработки до второй температуры обработки со скоростью охлаждения не более 5°F (2,8°C) в минуту с обеспечением глобулярной микроструктуры частиц альфа-фазы, обработку заготовки при второй температуре обработки в диапазоне температур от температуры на 600°F (336°C) ниже температуры бета-перехода сплава до температуры на 350°F (196°C) ниже температуры бета-перехода сплава, причем вторая температура обработки ниже, чем первая температура обработки.

Изобретение относится к металлургии, в частности к способу изготовления плоских изделий из сплава на основе титана, и может быть использовано при производстве комплектующих изделий, предназначенных для работы в высокотемпературной зоне тракта газотурбинных двигателей и других изделий, предназначенных для работы при температурах до 1000°С.

Изобретение относится к металлургии, в частности к способу изготовления плоских изделий из сплава на основе титана, и может быть использовано при производстве комплектующих изделий, предназначенных для работы в высокотемпературной зоне тракта газотурбинных двигателей и других изделий, предназначенных для работы при температурах до 1000°С.

Изобретение относится к области металлургии, в частности к способам выплавки слитков сплава на основе титана, легированного танталом, гафнием и хромом, с целью получения из него высокопрочных, жаропрочных и жаростойких изделий, в основном используемых в аэрокосмической технике.

Изобретение относится к области металлургии, в частности к способам выплавки слитков сплава на основе титана, легированного танталом, гафнием и хромом, с целью получения из него высокопрочных, жаропрочных и жаростойких изделий, в основном используемых в аэрокосмической технике.
Изобретение относится к изготовлению детали из порошка титанового сплава. Способ включает изготовление спеченной преформы, имеющей плотность 80-95% от теоретически максимальной плотности, отделение от спеченной преформы части, имеющей объем, превышающий объем детали, и форму, отличающуюся от близкой к заданной форме детали, термоциклирование упомянутой части спеченной преформы при ее сверхпластической деформации, обеспечение фазового превращения сплава между двумя твердыми фазами α и β с получением детали, имеющей форму, близкую к заданной форме, и плотность, составляющую 99-100% от теоретически максимальной плотности, и обработку детали с получением окончательно заданной формы детали.

Изобретение относится к способам обработки двухфазных титановых сплавов с альфа-бета-структурой. Способ термомеханической обработки заготовки из двухфазного альфа-бета-титанового сплава, включающий этапы, на которых проводят обработку заготовки при первой температуре обработки в диапазоне температур от температуры на 300°F (168°C) ниже температуры бета-перехода сплава до температуры на 30°F (16,8°C) ниже температуры бета-перехода сплава, охлаждение заготовки от первой температуры обработки до второй температуры обработки со скоростью охлаждения не более 5°F (2,8°C) в минуту с обеспечением глобулярной микроструктуры частиц альфа-фазы, обработку заготовки при второй температуре обработки в диапазоне температур от температуры на 600°F (336°C) ниже температуры бета-перехода сплава до температуры на 350°F (196°C) ниже температуры бета-перехода сплава, причем вторая температура обработки ниже, чем первая температура обработки.

Изобретение относится к области металлургии, в частности к способам термомеханической обработки супераустенитных нержавеющих сталей. Способ обработки супераустенитной нержавеющей стали включает нагрев стали до рабочего диапазона температур от температуры рекристаллизации до температуры ниже начальной температуры плавления стали, обработку стали давлением в рабочем диапазоне температур, нагрев стали до температуры в рабочем диапазоне температур, при этом супераустенитная нержавеющая сталь не охлаждается до температуры ниже рабочего диапазона температур в течение периода времени от упомянутой обработки стали давлением до нагрева по меньшей мере поверхностной области.

Изобретение относится к металлургии, в частности к способу изготовления плоских изделий из сплава на основе титана, и может быть использовано при производстве комплектующих изделий, предназначенных для работы в высокотемпературной зоне тракта газотурбинных двигателей и других изделий, предназначенных для работы при температурах до 1000°С.

Изобретение относится к области металлургии, а именно к получению заготовки из (α+β)-титановых сплавов для изделий, испытывающих переменные механические нагрузки, и может быть использовано для изготовления изделий, имеющих высокую энергоемкость.

Изобретение относится к области металлургии, в частности к способам получения изделий из высокожаропрочных деформируемых никелевых сплавов, и может найти применение в авиационной промышленности в качестве метода получения заготовок дисков газотурбинных двигателей (ГТД).

Изобретение относится к области металлургии, в частности к трубопрокатному производству, а именно к изготовлению бесшовных холоднодеформированных труб из титанового сплава типа Ti-3Al-2,5V, и может быть использовано для изготовления изделий ответственного назначения.

Изобретение относится к машиностроению, а именно к обработке металлов давлением, и может быть использовано для получения микрокристаллической структуры металла с целью его упрочнения.

Изобретение относится к области металлургии, в частности к способам получения изделий из высокожаропрочных деформируемых никелевых сплавов, и может найти применение в авиационной промышленности, а также в энергетическом машиностроении в качестве способа получения заготовок дисков газотурбинных двигателей (ГТД).

Изобретение относится к области обработки металлов давлением, в частности к способам изготовления прутков и заготовок из сплавов титана, применяемых в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой промышленности, медицине.

Изобретение относится к области металлургии, в частности к технологии интенсивной деформационной обработки алюминиевого сплава АМг6, и может быть использовано при изготовлении деформированных полуфабрикатов и легковесных изделий из него, предназначенных для использования в авиакосмической, судостроительной и автомобильной отраслях промышленности.

Изобретение относится к способам обработки титановых сплавов и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава для аддитивной технологии. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включает нагрев и деформацию заготовки путем волочения или прокатки в несколько проходов. Деформацию заготовок проводят путем волочения или прокатки при нагреве заготовок (Тз) до температуры Тз=300-635°С. Скорость деформации (V) заготовки выбирают на каждом проходе в зависимости от диаметра (d) заготовки: V=(2-10) м/мин для диаметра d=(от 8,0 до 7,0) мм, V=(10-15) м/мин для диаметра d=(от менее 7,0 до 5,0) мм, V=(15-20) м/мин для диаметра d=(от менее 5,0 до 4,0) мм, V=(20-30) м/мин для диаметра d=(от менее 4,0 до 3,0) мм, V=(30-40) м/мин для диаметра d=(от менее 3,0 до 2,0) мм, V=(40-60) м/мин для диаметра d=(от менее 2,0 до 1,6) мм. Получают проволоку единым куском без сварных соединений с высокой прочностью, пластичностью и низкой анизотропией механических свойств по длине проволоки. Повышается качество проволоки. 2 з.п. ф-лы, 2 ил., 1 табл., 5 пр.

Изобретение относится к термомеханической обработке сплавов на основе титана с структурой и может быть использовано для создания заготовок, имеющих высокую энергоемкость, мелкодисперсную микроструктуру с размером зерна мкм, для изделий, испытывающих переменные механические нагрузки. Способ получения заготовки из титановых сплавов для изделий, испытывающих переменные механические нагрузки, включает многоэтапную ковку заготовки. На первом и третьем этапах ковки заготовку из титанового сплава нагревают до температуры T1, которая выше температуры полного полиморфного превращения Tβ+40≤T1≤Tβ+130, где Тβ - температура фазового альфа-бета перехода, на втором этапе нагревают заготовку из титанового сплава до температуры Т2, которая ниже полиморфного превращения Тβ-60≤Т2≤Тβ. На всех этапах ковку проводят с деформацией 1,1-1,5 в течение 10-20 мин при вращении заготовки вокруг своей оси по схеме, включающей один полный оборот заготовки с поворотом на 90°, второй полный оборот с поворотом заготовки на 45°, третий полный оборот с поворотом заготовки на 22°, причем после каждого этапа проводят закалку или охлаждение заготовки в воду, при этом после третьего этапа все последующие этапы ковки проводят при нагреве заготовки до температуры Тβ-60≤Т2≤Тβ и с деформацией 1,1-1,6 в течение 10-20 мин при повороте заготовки вокруг своей оси на 90°. Этапы ковки, проводимые после третьего этапа, повторяют до получения равномерной, мелкодисперсной микроструктуры с размером зерна мкм, содержащей равноосную α-фазу в количестве 40-80 в трансформированной β-матрице без образования непрерывной сетки α-фазы на границах β зерен, затем полученную заготовку подвергают отжигу при температуре °С в течение 40-80 минут и охлаждают. Заготовки характеризуются высокими значениями механических свойств и энергоемкости. 3 табл., 5 пр.

Наверх