Патенты автора Ляшенко Надежда Владимировна (RU)

Изобретение относится к измерительной технике, предназначено для преобразования изменения давления в различных средах в электрический сигнал в широком динамическом диапазоне работы и может быть использовано в технологических процессах, измерении напряжения в грунтах при ударных нагрузках, экспериментальных исследованиях. Устройство состоит из корпуса, воспринимающей мембраны, передающего штока, упругих консольных балок равного сопротивления изгибу, прямого полого толстостенного цилиндра, корпусов электрохимических ячеек с электролитом, вставок, диска, металлических проводников, выходных клейм. Прямой полый толстостенный цилиндр, вставки и диск выполнены из твердых, а корпуса электрохимических ячеек из упругого электроизоляционного материала. Упругие консольные балки равного сопротивления изгибу своими основаниями жестко защемлены горизонтально в боковую внутреннюю стенку прямого полого цилиндра по окружности в два ряда попарно друг над другом с зазорами, куда в места, примыкающие к защемлению, помещены корпуса электрохимических ячеек с электролитом в виде прямых полых цилиндров. Одно основание каждого цилиндра скреплено с нижней плоскостью верхней балки, а другое - с верхней плоскостью нижней балки каждой пары. В зазорах между свободными концами пары консольных балок закреплены вставки, а на конце передающего штока - диск, касающийся свободных концов всех верхних балок. Каждая верхняя балка, с первой до предпоследней пары, соединена металлическим проводником с нижней балкой соседней последующей пары, а металлический проводник, соединенный с нижней балкой первой пары, и металлический проводник, соединенный с верхней балкой последней пары, подсоединены к выходным клеммам преобразователя давления. Технический результат заключается в расширении динамического диапазона работы и снижении энергопотребления. 1 ил.

Изобретение может быть использовано в химической промышленности при производстве бутадиена и конверсии оксида углерода (II). Способ получения мелкокристаллических ферритов-хромитов со структурой шпинели включает гомогенизацию исходных оксидов цинка (II), железа (III) и хрома (III). Смесь оксидов получают при разложении растворов нитратов цинка (II), железа (III), сульфата хрома (III) с концентрацией 1 моль/л. В смесь растворов вводят при перемешивании 10-20% раствора аммиака с концентрацией 14 моль/л и 25-35% раствора лимонной кислоты с концентрацией 6,25 моль/л. Полученную смесь выпаривают в течение 10-30 мин с последующим прокаливанием в течение 10-20 мин при 500-700°С до прекращения газообразования. Затем проводят термообработку при 900°С в течение 30 мин. Изобретение позволяет упростить режим термообработки и уменьшить её продолжительность, снизить энергоемкость при получении мелкокристаллических ферритов-хромитов цинка, увеличить площадь поверхности получаемого материала. 3 ил., 1 табл., 3 пр.

Изобретение относится к составам бетонных смесей, применяемых для изготовления надземных конструкций при малоэтажном строительстве. Технический результат - снижение стоимости бетона с невысоким коэффициентом теплопроводности для малоэтажного строительства. Бетонная смесь, содержащая грунт естественной влажности с частицами размером 0,1 мм и содержанием глинистых частиц не более 30%, суперпластификатор С-3 и воду, дополнительно содержит известь пушонку, костру конопляную и хлористый кальций при следующем соотношении компонентов, мас.ч.: известь - 1, указанный грунт - 2, костра конопляная 1,5-2, суперпластификатор С-3 - 0,01, хлористый кальций 0,1-0,15, вода - 2-2,5. 1 табл.

Изобретение относится к строительству и может быть использовано для улучшения физико-механических свойств дисперсных грунтов в зоне оползневых склонов возвышенных территорий от большого водонасыщения подземными водами с помощью противофильтрационного вертикального дренажа. Задачей изобретения является улучшение физико-механических свойств дисперсных грунтов оползневых склонов, защита от обводнения подземными водами, кооптация и самотечный отвод дренажных вод из зоны оползневой призмы возвышенной территории, упрощение технологии строительных процессов, сокращение трудоемкости, материалоемкости и энергоемкости строительных работ, снижение затрат на строительство и эксплуатацию сооружения. Способ вертикального дренажа заключается в том, что с помощью дренирующих свай осуществляется уменьшение поступления подземных вод в массив водонасыщаемого грунта. Дренирующие сваи формируют с системой самотечного отвода дренажных вод из зоны оползневого склона возвышенной территории в скважинах диаметром 0,4…0,8 метра. Скважины бурят на глубину 8…12 метров в водоносных слоях грунта с врезкой скважин в слой водонепроницаемого грунта на глубину 0,2…0,3 метра. Дренирующие сваи располагают вдоль верхней границы оползневой плоскости скольжения с шагом 1,5…3 метра, но не ближе трех диаметров дренирующей сваи. С помощью технологического кондуктора в скважину опускается герметичный пленочный пенал длиной 3,5…5 метров, диаметром на 0,25…0,35 метра больше диаметра скважины для временного крепления и уплотнения грунта стенок скважины, оборудованный вентилем и манометром контроля давления сжатого воздуха. Герметичный пленочный пенал наполняют сжатым воздухом высокого давления, а затем убирают технологический кондуктор. По оси расположения дренирующих свай закрытой проходкой из смотровых колодцев прокладывают проектную дренажную канализацию с прорезкой скважин над слоем водонепроницаемого грунта с использованием пластмассовых труб диаметром 150…250 мм, которые имеют перфорацию в лотковой их части. После завершения прокладки проектной дренажной канализации выпускают сжатый воздух из герметичных пленочных пеналов и вынимают их из скважин. Устанавливают в скважину загрузочную трубу для наполнения скважины местным грубодисперсным грунтом. Загрузочная труба состоит из цилиндрической части с диаметром на 0,1…0,15 метра меньше диаметра скважины и длиной 3,5…5 метров, а верхнюю часть выполняют конусообразной, высотой 0,5…0,6 метров с диаметром вверху на 0,45…0,55 метра больше диаметра скважины. Устье скважины на глубину 0,3…0,4 метра заполняют с уплотнением местным пылевато-глинистым грунтом. Таким образом, закрепление дисперсных грунтов в зоне оползневых склонов возвышенных территорий достигается защитой его объема от водонасыщения миграционным притоком подземных вод с помощью самотечного вертикального дренажа предлагаемой конструкции, что позволяет упростить технологию строительных процессов, сократить трудоемкость, материалоемкость и энергоемкость строительных работ, снизить затраты на строительство и эксплуатацию сооружения. 8 ил.

Изобретение относится к строительству зданий и сооружений (ЗиС), а именно к способам их защиты от подпорного подтопления грунтовыми водами их подземной части

Изобретение относится к строительству зданий и сооружений, а именно для улучшения строительных условий при возведении подземных частей в котлованах и их защиты в эксплуатационный период от подтопления грунтовыми водами верховодки

Изобретение относится к строительству зданий и сооружений, а именно преимущественно к способам их защиты от подпорного подтопления грунтовыми водами
Изобретение относится к технологии изготовления несущих и самонесущих стеновых конструкций из грунтобетонных мелких блоков с несквозными пустотами, предназначенных для малоэтажного строительства
Изобретение относится к составам бетонных смесей, применяемых для изготовления подземных конструкций, стеновых блоков, ограждающих и самонесущих строительных конструкций и возведения стен из монолитного бетона при малоэтажном строительстве

 


Наверх