Патенты автора Чепкин Виктор Михайлович (RU)

Реверсивное устройство турбореактивного двигателя, содержащее устройство для перекрытия газового потока в корпусе двигателя, размещенного в мотогондоле самолета, содержит выхлопные каналы, установленные по направлению движения газового потока, по окружности в кольцевой полости, клапаны перепуска, установленные на входе в каждый из выхлопных каналов, поворотные решетки, установленные на выходе каждого из выхлопных каналов и образующие в закрытом положении с наружной поверхностью корпуса мотогондолы единую аэродинамическую поверхность, причем устройство для перекрытия газового потока установлено за смесителем двигателя и выполнено в виде закрылков, установленных по окружности относительно продольной оси двигателя, соединенных с радиальными осями, установленными вдоль центральных участков закрылков, силового кольца, охватывающего кок турбореактивного двигателя, соединенного с корпусом двигателя посредством тяг, силовых стоек, установленных по направлению газового потока за радиальными осями и жестко соединенных с последними, причем противолежащие концы силовых стоек соединены с корпусом двигателя и силовым кольцом соответственно, при этом каждый из закрылков с установленной за ним силовой стойкой образуют единый аэродинамический профиль, кроме того закрылки выполнены с возможностью поворота в окружном направлении относительно радиальных осей. Изобретение позволяет обеспечить возможность независимого регулирования элементов реверсивного устройства, а именно устройства перекрытия газового потока и клапанов перепуска с поворотными решетками, с целью регулирования площади проходных сечений для оптимизации параметров работы двигателя. 3 з.п. ф-лы, 3 ил.

Трехъярусная рабочая лопатка турбовентилятора содержит последовательно расположенные от корпуса турбовентилятора к диску ротора рабочую лопатку вентилятора и рабочую лопатку турбины, соединенные между собой посредством промежуточного элемента с образованием трех проточных газовых каналов. Промежуточный элемент выполнен в виде рабочей лопатки турбодетандера с образованием плавного перехода от профиля к профилю всех трех рабочих лопаток. Проточная часть газового канала рабочей лопатки турбодетандера ограничена полками. Рабочая лопатка вентилятора соединена с рабочей лопаткой турбодетандера посредством разъемного шарнирного соединения. Достигается интенсивное охлаждение двигателя, повышение тяги двигателя, снижение массы и увеличение прочностных показателей трехъярусной рабочей лопатки турбовентилятора, а также её надежности в целом. 1 ил.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Всеракурсное сопло содержит установленный между форсажной камерой и реактивным соплом двигателя корпус в виде вставки, состоящей из неподвижной секции и поворотной, способной вращаться вокруг продольной оси двигателя, а также отклоняемую часть сопла со средствами управления в виде силовых гидроцилиндров. Механизм поворота выполнен в виде цепной передачи, привод которой находится на неподвижной секции вставки. На поворотной секции закреплена двойная цепь, на концах которой установлены демпферы, между неподвижной и поворотной секциями вставки установлено контактное уплотнение. Подвод рабочей жидкости к силовым гидроцилиндрам отклоняемой части сопла осуществляется по гибкому неэластичному двухканальному трубопроводу высокого давления, содержащему жесткие трубки с переходниками, собираемые в цепь, изгиб которой осуществляется посредством поворота трубок относительно переходников. Изобретение позволяет упростить конструкцию поворотного механизма всеракурсного сопла и увеличить его надежность, а также обеспечивает возможность подвода рабочей жидкости к силовым цилиндрам отклоняемой части сопла. 3 ил.

Изобретение относится к области авиационного двигателестроения, а именно к клапанным устройствам для газотурбинных двигателей. Клапанный узел вентилятора содержит корпус канала перепуска с установленным на нем с возможностью осевого перемещения кольцевым клапаном и механизм перемещения кольцевого клапана с приводом, размещенным над корпусом канала перепуска. Кольцевой клапан выполнен в виде оболочки профилированной формы и системы ребер жесткости внутри него, механизм перемещения кольцевого клапана содержит две тяги с общей поворотной осью, одна из которых соединена с кольцевым клапаном, а другая - с приводом. Тяга, соединенная с кольцевым клапаном, и элемент ее крепления к последнему размещены внутри кольцевого клапана, а поворотная ось проходит через соответствующие отверстия в корпусе канала перепуска и кольцевого клапана, при этом кольцевой клапан выполнен с возможностью поступательно-вращательного движения. Изобретение позволяет упростить конструкцию поворотного механизма клапанного узла, снизить массу клапанного узла и повысить его ресурс и надежность, а также поддержать минимальное гидравлическое сопротивление течению воздуха в канале и минимизировать утечки воздуха через зазоры. 3 ил.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Поворотное сопло турбореактивного двигателя содержит установленный между форсажной камерой и реактивным соплом двигателя корпус в виде вставки, состоящей из неподвижной секции и поворотной, способной вращаться вокруг продольной оси двигателя, а также механизм поворота. Механизм поворота выполнен в виде цепной передачи, привод которой находится на неподвижной секции вставки. На поворотной секции закреплена двойная цепь, на концах которой установлены демпферы. Каждый демпфер на конце двойной цепи включает рычаг, одна сторона которого взаимодействует с концом двойной цепи, а другая - с пружиной, опирающейся на поворотную секцию. Между неподвижной и поворотной секциями вставки установлено контактное уплотнение. Изобретение позволяет уменьшить габариты и вес конструкции, повысить надежность механизма поворота сопла двигателя, а также повысить КПД двигателя в целом. 3 ил.

Изобретение относится к теплообменным аппаратам и может быть использовано, в частности, в области авиадвигателестроения в системах охлаждения воздуха и газа газотурбинных двигателей. Воздухо-воздушный теплообменный аппарат имеет кольцевую форму, состоит из нескольких теплообменных модулей, установленных под углом к направлению потока воздуха и представляющих собой конструкцию из нескольких трубок. Каждый из теплообменных модулей выполнен в виде нескольких пар концентрических U-образных трубок овальной формы, собранных зацело. Большая ось овальных трубок направлена вдоль направления потока наружного воздуха, а отношение длины большой оси овала к малой оси овала выполнено в диапазоне 1:5-1:100. U-образные овальные трубки снабжены интенсификаторами течения воздуха в виде системы ребер наружной и внутренней поверхности овальных трубок. Изобретение позволяет увеличить эффективность теплообмена с сохранением уровня гидравлических потерь во внутреннем и наружном контуре и снизить пульсации колебаний воздуха (газа) наружного контура. 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к области авиадвигателестроения. Секция вала ротора с лопатками компрессора низкого давления (КНД) турбореактивного двигателя (ТРД), включающего корпус с проточной частью, выполнена в качестве второй секции вала ротора по ходу воздушного потока в КНД. Секция включает диск третьей ступени и снабженную фланцем цилиндрическую проставку. Секция выполнена неразборной. Диск выполнен в виде моноэлемента, включающего обод, переходящий в кольцевое полотно, усиленное ступицей, снабженной центральным отверстием. Обод диска снабжен со стороны, обращенной к проточной части, системой пазов для соединения с лопатками ротора. Продольная ось каждого из пазов диска образует с осью ротора в проекции на условную осевую плоскость, нормальную к радиусу, проведенному через центральную точку оси паза, угол α=(19÷28)°. Пазы равномерно разнесены по периметру диска. Обод диска выполнен с возрастающим по направлению потока рабочего тела радиусом с градиентом радиального расширения Gоб. Вариантно обод диска третьей ступени выполнен с возрастающим к выходу из секции радиусом, а образующая внешней грани обода диска составляет с осью вала в осевой плоскости последнего угол φ=(3÷9)°. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса газодинамической устойчивости (ГДУ) на всех режимах работы компрессора при повышении ресурса вала ротора КНД посредством посекционной сборки вала без увеличения материалоемкости. 2 н. и 8 з.п. ф-лы, 2 ил.

Группа изобретений относится к области авиадвигателестроения. Секция вала ротора компрессора низкого давления (КНД) турбореактивного двигателя (ТРД), включающего корпус с проточной частью, выполнена в качестве первой секции вала ротора по ходу воздушного потока в КНД. Секция включает цапфу передней опоры вала ротора, диск первой ступени, диск второй ступени и цилиндрическую проставку. Секция выполнена неразборной. Каждый диск выполнен в виде моноэлемента, включающего обод, переходящий в кольцевое полотно, усиленное ступицей, снабженной центральным отверстием. Обод каждого диска снабжен системой пазов для замкового соединения с рабочими лопатками ротора. Продольная ось каждого из пазов образует с осью ротора в проекции на условную осевую плоскость, нормальную к радиусу, проведенному через центральную точку оси паза, угол α. Пазы равномерно разнесены по периметру диска. Обод каждого диска выполнен с возрастающим от входа к выходу из секции радиусом с градиентом радиального расширения, составляющим G1об=(0,31÷0,52) [м/м] и G2об=(0,23÷0,33) [м/м]. Причем обод диска первой ступени асимметрично соединен с полотном диска с образованием разноплечих наклонных полок. Радиус диска первой ступени от оси ротора до внешней поверхности обода в средней плоскости полотна диска составляет (0,32÷0,55) от радиуса периферийного контура проточной части двигателя и (0,42÷0,70) для диска второй ступени. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса газодинамической устойчивости на всех режимах работы компрессора при повышении ресурса вала ротора КНД без увеличения материалоемкости. 4 н. и 15 з.п. ф-лы, 2 ил.

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных турбореактивных двигателей. Диск первой ступени ротора компрессора низкого давления ТРД выполнен в виде моноэлемента, включает обод, переходящий в кольцевое полотно, усиленное ступицей, снабженной центральным отверстием. Обод асимметрично соединен с полотном диска с образованием разноплечих кольцевых конических наклонных полок. Обод диска выполнен с возрастающим в сторону потока рабочего тела в осевом сечении КНД радиусом и с углом образующей внешней поверхности обода относительно оси вала ротора. Обод диска снабжен системой пазов для закрепления лопаток. Продольная ось каждого паза образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол α установки хвостовика лопатки. Пазы равномерно разнесены по периметру диска с заявленной угловой частотой и выполнены в поперечном сечении с боковыми гранями, образующими элемент замкового соединения с хвостовиком лопатки. Полотно снабжено коническим кольцевым элементом, выполненным с углом наклона образующей к геометрической оси диска, превышающим угол наклона образующей внешней поверхности обода. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса ГДУ на всех режимах работы компрессора при повышении ресурса диска рабочего колеса первой ступени КНД без увеличения материалоемкости диска. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных ТРД. Вал компрессора низкого давления выполнен ступенчатой барабанно-дисковой конструкции, включающей не более четырех дисков. Каждый диск включает обод, переходящий в кольцевое полотно, усиленное массивной ступицей, снабженной центральным отверстием, ступенчато радиально нарастающим от первого к четвертому диску. Толщина полотна диска не менее чем в три раза меньше осевой ширины ступицы. Опертый на полотно обод снабжен системой наклонных относительно оси вала пазов для установки хвостовиков рабочих лопаток. Пазы равномерно разнесены по периметру диска. Продольная ось паза диска первой ступени образует с осью вала ротора в проекции на условную осевую плоскость, нормальную к оси пера, угол установки хвостовика лопатки α=(19÷25)°. Ободы первых трех дисков образуют относительно средней плоскости полотна две неравноплечие полки, которыми непосредственно или через цилиндрические проставки диски объединены в барабанно-дисковую конструкцию вала ротора. Вал собран из неразъемных монтажных секций. Полотно диска первой ступени с фронтальной стороны и полотно диска третьей ступени с тыльной стороны снабжены коническими кольцевыми элементами, неразъемно соединенными с ответными коническими диафрагмами цапф передней и задней опоры. Образующая конического элемента диска первой ступени наклонена к оси вала под углом β. Технический результат, достигаемый изобретением, состоит в повышении КПД и увеличении запаса ГДУ на всех режимах работы компрессора при повышении ресурса вала ротора КНД без увеличения материалоемкости. 5 з.п. ф-лы, 3 ил.

Изобретение относится к области авиадвигателестроения. Лопатка снабженного пазами диска рабочего колеса ротора компрессора низкого давления (КНД) турбореактивного двигателя (ТРД), включающего проточную часть, ограниченную по периферийному контуру корпусом двигателя, содержит перо и хвостовик. Лопатка предназначена для установки в любой из пазов диска рабочего колеса второй ступени. Хвостовик лопатки имеет продольную ось, соосную или параллельную геометрической оси паза диска и образующую с осью ротора в проекции на условную осевую плоскость, нормальную к радиальной оси пера лопатки, угол установки хвостовика лопатки α0, определенный в диапазоне α0=(17÷27)°. Перо лопатки выполнено с переменной относительно оси ротора осевой закруткой, нарастающей с радиальным удалением от оси вала ротора с градиентом закрутки пера Gз.п., определенным в проекции на условную осевую плоскость в диапазоне (159,2÷245,8) [град/м]. Перо лопатки выполнено с боковыми кромками, расходящимися к периферийному торцу с градиентом увеличения хорды Gy.x., составляющим (1,6÷2,5)·10-2 [м/м]. Технический результат, достигаемый изобретением, состоит в улучшении геометрической конфигурации, пространственной жесткости, силовых и аэродинамических параметров лопатки рабочего колеса второй ступени вала ротора КНД ТРД, а также в повышении КПД и расширении диапазона режимов газодинамической устойчивости компрессора при повышении ресурса лопатки. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей

Изобретение относится к транспортным устройствам, автономно работающим внутри магистральных трубопроводов большого диаметра, например, газопроводов, и служащим для перемещения внутри трубопровода диагностического и ремонтного оборудования, и имеющим на борту мощный источник электроэнергии в виде электрогенератора, получающего энергию от транспортируемого в трубопроводе продукта

Изобретение относится к авидвигателестроению, а именно, к конструкции элементов форсажных камер турбореактивных двухконтурных двигателей (ТРДД)

Изобретение относится к газотурбинным двигателям и касается уплотнения опоры вала

 


Наверх