Патенты автора Ечевский Геннадий Викторович (RU)

Описан способ приготовления катализатора для реакций, идущих по кислотно-основному механизму, на основе высококремнеземного цеолита типа MFI, включающий гидротермальный синтез цеолитного порошка из силикагеля или смеси силикагелей различного состава в присутствии бутилового спирта, в присутствии затравки цеолита MFI с высокой степенью кристалличности, при нагревании, включающий удаление бутилового спирта и проведение кислотного ионного обмена раствором азотной кислоты, проведение селективного ионного обмена раствором азотнокислого лантана при концентрации 2-6 г/л в присутствии сульфосалициловой кислоты в качестве хелатирующего агента с последующей отмывкой, грануляцию, сушку и термопаровую обработку цеолита, отличающийся тем, что после достижения 100 % кристалличности синтезируемого цеолитного порошка гидротермальный синтез цеолитного порошка MFI продолжают в течение 4-6 часов в тех же самых условиях без замены маточного раствора. Технический результат - катализаторы, приготовленные описанным способом, обладают высокой активностью, селективностью и стабильностью каталитического действия. 1 табл., 8 пр.

Описан способ приготовления катализатора для реакций, идущих по кислотно-основному механизму, на основе высококремнеземного цеолита типа MFI, включающий гидротермальный синтез цеолитного порошка из силикагеля или смеси силикагелей различного состава в присутствии бутилового спирта, в присутствии затравки цеолита MFI с высокой степенью кристалличности, при нагревании, включающий удаление бутилового спирта и проведение кислотного ионного обмена раствором азотной кислоты, проведение селективного ионного обмена раствором азотнокислого лантана при концентрации 2-6 г/л в присутствии сульфосалициловой кислоты в качестве хелатирующего агента с последующей отмывкой, грануляцию, сушку и термопаровую обработку цеолита, отличающийся тем, что после достижения при гидротермальном синтезе 100% кристалличности синтезируемого порошка цеолита MFI, проводят дальнейший синтез в течение 4-6 ч в тех же самых условиях без замены маточного раствора, полученный в результате синтеза цеолит дополнительно обрабатывают раствором азотнокислого лантана при концентрации 2-6 г/л при температуре 70-100°С без использования хелатирующих агентов, в качестве завершающей термообработки используют прокаливание при температуре не выше 520°C. Технический результат - катализаторы, приготовленные описанным способом, обладают высокой активностью, селективностью и стабильностью каталитического действия. 1 табл., 8 пр.

Описан способ приготовления катализатора для реакций, идущих по кислотно-основному механизму, на основе высококремнеземного цеолита типа MFI, включающий гидротермальный синтез цеолитного порошка из силикагеля или смеси силикагелей различного состава в присутствии бутилового спирта, в присутствии затравки цеолита MFI с высокой степенью кристалличности при нагревании, включающий удаление бутилового спирта и проведение кислотного ионного обмена раствором азотной кислоты, проведение селективного ионного обмена раствором азотнокислого лантана при концентрации 2-6 г/л в присутствии сульфосалициловой кислоты в качестве хелатирующего агента с последующей отмывкой, грануляцию, сушку и термопаровую обработку цеолита, отличающийся тем, что после достижения при гидротермальном синтезе 100 % кристалличности синтезируемого порошка цеолита MFI, проводят дальнейший синтез в течение 4-6 ч в тех же самых условиях без замены маточного раствора, полученный в результате синтеза цеолит дополнительно обрабатывают раствором азотнокислого лантана при концентрации 2-6 г/л при температуре 70-100°С без использования хелатирующих агентов. Технический результат: катализаторы, приготовленные описанным способом, обладают высокой активностью, селективностью и стабильностью каталитического действия. 8 пр., 1 табл.
Изобретение относится к способу получения изопропилбензола в процессе алкилирования бензола пропиленом при температуре 170-230°C, давлении от атмосферного до 50 атм, мольном отношении бензол/пропилен в исходной смеси от 4:1 до 10:1, весовой скорости подачи исходной смеси от 0,2 до 10 ч-1 с использованием катализатора на основе цеолита Бета, приготовленного контактированием цеолита Бета с раствором нитрата аммония для удаления соединений натрия и переведения цеолита в водородную форму, с последующими стадиями грануляции со связующим, сушки и прокаливания гранул, причем цеолит Бета перед грануляцией со связующим предварительно подвергают обработке раствором хелатирующего агента, а затем обрабатывают перегретым водяным паром при температуре не выше 550°С в течение не менее 2 ч, в качестве хелатирующиего агента применяют сульфосалициловую кислоту, этилендиаминтетрауксусную кислоту ЭДТА, сульфобензойную кислоту, 3-гидроксинафталин-1,4-дисульфокислоту. Технический результат заключается в увеличении длительности межрегенерационного пробега катализатора. 5 пр.
Изобретение относится к способам алкилирования бензола изопропиловым спиртом. Алкилирование осуществляют в проточном реакторе, имеющем две реакционные зоны, в первой из которых в качестве катализатора используют γ-Al2O3 и поддерживают температуру не ниже 450°γС, а во второй зоне используют катализатор, приготовленный описанным ниже способом, и поддерживают температуру не ниже 200°С. В другом варианте способа алкилирования используют два последовательно соединенных проточных реактора, в первом из которых в качестве катализатора используют γ-Al2O3 и поддерживают температуру не ниже 450°С, а во втором реакторе используют катализатор, приготовленный описанным ниже способом, и поддерживают температуру не ниже 200°С. Способ приготовления катализатора на основе декатионированного цеолита ZSM-12 включает гранулирование со связующим, сушку и прокаливание гранул. Декатионированный цеолит ZSM-12 для придания гидрофобных свойств перед грануляцией со связующим предварительно подвергают обработке раствором хелатирующего агента, а затем обрабатывают перегретым водяным паром при температуре не выше 550°С в течение не менее 2 ч. В качестве хелатирующиего агента применяют сульфосалициловую кислоту, этилендиаминтетрауксусную кислоту ЭДТА, сульфобензойную кислоту, 3-гидроксинафталин-1,4-дисульфокислоту. Технический результат – увеличение длительности межрегенерационного пробега катализатора. 2 н.п. ф-лы, 10 пр.
Изобретение относится к способу приготовления катализатора процесса гидрокрекинга, который дает повышенные количества продукта, кипящего в диапазоне средних дистиллятов, и использует катализатор, включающий Бета цеолит, в качестве активного компонента крекинга. Описан способ приготовления пористого катализатора гидрокрекинга тяжелого вакуумного газойля на основе цеолита Бета с мольным отношением SiO2:Al2O3 9-30:1, включающий контактирование цеолита Бета с кислотой, для переведения цеолита в водородную форму и частичного деалюминирования, обработку паром перед кислотной экстракцией, нанесение компонента гидрирования, такого как никель и вольфрам, цеолит Бета дополнительно подвергают обработке раствором хелатирующего агента, выбранного из ряда: сульфосалициловая кислота, этилендиаминтетрауксусная кислота ЭДТА, сульфобензойная кислота, а затем перегретым водяным паром при температуре выше 550°С в течение не менее 2 ч. Гидрокрекинг тяжелого вакуумного газойля, имеющего начальную температуру кипения выше 340°С, осуществляют контактированием сырья с катализатором, приготовленным описанным выше способом, при температуре от 230 до 500°С в присутствии газообразного водорода при общем давлении от 500 до 20000 кПа, объемной скорости от 0,1 до 10 LHSV. Технический результат - увеличение выхода средних дистиллятов (дизельной и масляной фракций) с низкой температурой застывания. 2 н.п. ф-лы, 8 табл., 8 пр.

Настоящее изобретение относится к катализатору для процесса изомеризации н-бутана в изобутан, включающему в свой состав оксид металла III-IV групп, анион кислородсодержащей кислоты, причем он представляет собой каталитический комплекс общей формулы ZrxOy*aAn-, где: х=1-2, у=2-3, An- - анион серной кислоты, а=0.01-0.2, диспергированный непосредственно на гидратированном нанодисперсном ZrxOy, содержащий гидрирующий компонент. Также описаны варианты способа приготовления такого катализатора и способ каталитической изомеризации н-бутана н-бутана в изобутан, по которому в качестве катализатора используют описанный выше катализатор. Технический результат - увеличение производительности катализатора, снижение температуры и давления проведения процесса. 4 н. и 9 з.п. ф-лы, 5 табл., 52 пр.

Изобретение относится к катализаторам нефтеперерабатывающей и нефтехимической промышленности и может быть применено при производстве катализаторов депарафинизации и их использовании в нефтеперерабатывающей и нефтехимической промышленности для получения низкозастывающих базовых масел из высококипящих нефтяных фракций. Предлагаемый пористый катализатор готовят на основе цеолита алюмосиликатного либо галлийалюмосиликатного состава, выбранного из ряда ZSM-5, ZSM-11, либо их смеси, обработанного растворами органических или неорганических кислот, гранулированного с оксидом алюминия в качестве связующего, с последующей сушкой и прокалкой и подвергнутого дополнительной обработке перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч. Способ получения базовых масел с низкой температурой застывания депарафинизацией прямогонного вакуумного газойля (350-530°С) проводят при температурах реакции не ниже 330°С, давлении не более 0,3 МПа и массовых расходах сырья 2-4 ч-1. В качестве катализатора используют твердый пористый катализатор, приготовленный описанным выше способом. Технический результат - упрощение способа приготовления катализатора, увеличение выхода базовых масел с низкой температурой застывания из прямогонного вакуумного газойля и увеличение длительности межрегенерационного пробега катализатора. 2 н. и 2 з.п. ф-лы, 11 табл., 9 пр.

Изобретение относится к способу получения дизельного топлива с низкой температурой застывания, а именно зимнего и/или арктического дизельного топлива из летнего дизельного топлива. Описан способ приготовления катализатора для получения дизельного топлива в процессе депарафинизации дизельных фракций на основе цеолита алюмосиликатного либо галлийалюмосиликатного состава, выбранного из ряда ZSM-5, ZSM-11, либо их смесь, предварительно обработанного растворами органических или неорганических кислот и гранулированного с оксидом алюминия в качестве связующего, указанный пористый катализатор подвергают обработке перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч. Описан способ получения дизельного топлива в процессе депарафинизации дизельных фракций с температурой застывания не ниже минус 5°С при температуре не менее 280°С, в качестве катализатора используют катализатор, приготовленный описанным выше способом. Технический результат - увеличение выхода дизельной фракции с низкой температурой застывания из летнего дизельного топлива с температурой застывания не ниже минус 5°С и увеличение длительности межрегенерационного пробега катализатора. 2 н. и 2 з.п. ф-лы, 1 табл., 10 пр.

Изобретение относится к блоку каталитической ароматизации легких углеводородов, включающему нагреватель, каталитический реактор, рекуперационный теплообменник, отличающемуся тем, что в реакторе расположены по меньшей мере одна зона катализа и по меньшей мере одна зона окисления, разделенные водородселективой и теплопроводящей мембраной. При этом зона катализа оснащена линией подачи сырья, на которой последовательно расположены первый нагреватель, рекуперационный теплообменник и второй нагреватель, и линией вывода катализата через рекуперационный теплообменник, а зона окисления размещена на линии циркулирующего теплоносителя, на которой расположены второй нагреватель, рекуперационный теплообменник теплоносителя, первый нагреватель и газодувка, при этом к линии циркулирующего теплоносителя примыкают линии ввода воздуха и вывода балансового теплоносителя. Также изобретение относится к способу работы блока. Технический результат - упрощение блока ароматизации и увеличение выхода ароматических углеводородов. 2 н. и 5 з.п. ф-лы, 1 ил.

Изобретение относится к установке каталитической ароматизации легкого углеводородного сырья, включающей расположенные на линии подачи сырья по меньшей мере один блок каталитической переработки и блок выделения концентрата ароматических углеводородов с линией подачи циркулирующего газа в блок каталитической переработки. Установка характеризуется тем, что на линии циркулирующего газа установлен блок мембранного выделения водорода. Технический результат - повышение выхода целевых продуктов и упрощение установки. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к области химии, а именно к катализаторам, предназначенным для процесса гидроизомеризации н-алканов, а также прямогонных и гидроочищенных дизельных фракций, и может быть использовано в нефтеперерабатывающей промышленности. Описан катализатор для процесса гидроизомеризации н-алканов, который в качестве активного компонента содержит нанодисперсный карбид молибдена в количестве 2,5-10,0 мас. % от общей массы катализатора, в качестве кислотного носителя катализатор содержит кристаллический силикоалюмофосфат SAPO-31 со структурой ATO в количестве 30-80%, в качестве связующего содержит оксид алюминия в количестве 20-70%, а предшественник карбида вносится в катализатор на стадии приготовления формовочной смеси для грануляции. Технический результат - высокая активность, селективность и устойчивость к дезактивации коксом катализаторов в реакции гидроизомеризации н-алканов. 2 н. и 1 з.п. ф-лы, 5 пр., 10 табл.

Изобретение относится к области химии, а именно к катализаторам, предназначенным для процесса гидроизомеризации н-алканов, а также прямогонных и гидроочищенных дизельных фракций, и может быть использовано в нефтеперерабатывающей промышленности. Описан катализатор для процесса гидроизомеризации н-алканов, который в качестве активного компонента содержит нанодисперсный карбид молибдена в количестве 2,5-10,0 мас. %, а в качестве кислотного носителя катализатор содержит кристаллический силикоалюмофосфат SAPO-31 со структурой АТО, гранулированный с оксидом алюминия. Описан также способ приготовления катализатора нанесением активного компонента - карбида молибдена - на кислотный носитель с последующей карбонизацией. В качестве предшественника карбида молибдена используют органический комплекс парамолибдата аммония с лимонной кислотой, а в качестве кислотного носителя применяют кристаллический силикоалюмофосфат SAPO-31 со структурой АТО, предварительно гранулированный с оксидом алюминия. Нанесение органического комплекса парамолибдата аммония с лимонной кислотой осуществляют методом пропитки по влагоемкости с последующей карбонизацией в потоке водорода при температуре не выше 600°С. В результате получают катализатор, содержащий нанодисперсный карбид молибдена с дисперсностью 4-30 нм и удельной поверхностью 20-110 м2/г. Технический результат - высокая активность и селективность катализаторов в реакции гидроизомеризации н-алканов. 2 н. и 1 з.п. ф-лы, 7 пр., 7 табл.

Изобретение относится к катализаторам для процесса гидродеоксигенации алифатических кислородсодержащих соединений и одновременной гидроизомеризации н-алканов, который в качестве активного компонента содержит фосфид никеля и/или молибдена в количестве 2.5-10.0 мас. % при следующем атомном соотношении Ni/Mo=0.1-1.0. Катализатор содержит до 5 мас. % фосфора, находящегося в восстановленном состоянии; катализатор имеет удельную поверхность 170-250 м2/г, преобладающий радиус пор 80-120 Å. В качестве носителя катализатор содержит гамма-оксид алюминия. Технический результат заключается в получении катализаторов с высокой активностью и селективностью в реакции гидродеоксигенации алифатических кислородсодержащих соединений - метилпальмитата или рапсового масла и гидроизомеризации н-гексадекана и н-пентадекана. 2 н.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к газовой промышленности и может быть использовано для транспортировки газов по трубопроводам. Скважинную продукцию газоконденсатного месторождения (I) сепарируют (1) с получением газа входной сепарации (II), водного конденсата (III) и углеводородного конденсата (IV), который дросселируют и сепарируют с получением газа стабилизации (V) и стабилизированного углеводородного конденсата (VI), который фракционируют совместно с широкой фракцией легких углеводородов (VII) с получением дистиллята среднего (VIII) и широкого (IX) фракционного состава. Последний подвергают каталитической переработке и фракционируют с получением газа (X), бензина (XI) и компонента дизельного топлива (XII), который смешивают с дистиллятом среднего фракционного состава (VIII) и получают зимнее дизельное топливо (XIII). Газы стабилизации (V) и каталитической переработки (X) подвергают дегидроциклодимеризации с получением ароматических углеводородов (XIV) и газа (XV), который совместно с газом входной сепарации (II) подвергают комплексной подготовке с получением товарного газа (XVI) и широкой фракции легких углеводородов (VII), которую направляют на фракционирование со стабилизированным углеводородным конденсатом (VI). Изобретение позволяет расширить ассортимент товарных продуктов, производимых при подготовке скважинной продукции, в том числе получить моторные топлива. 1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способам каталитической переработки легкого углеводородного сырья, в частности к переработке углеводородных фракций С3+, и может найти применение в нефтегазовой, нефтеперерабатывающей и нефтехимической промышленности. Предложен способ, включающий нагрев легкого углеводородного сырья и каталитическую переработку в изотермическом реакторе со слоем катализатора, обогреваемым теплоносителем. Продукты реакции охлаждают и разделяют на жидкий продукт и газ, выводимые с установки. Теплоноситель получают путем окисления воздухом топлива и отходящего газа регенерации. Последний получают при окислительной регенерации катализатора. При необходимости осуществляют рециркуляцию части продукта реакции или предварительно смешивают сырье с водородом. Для обеспечения непрерывности по меньшей мере один из реакторов находится на стадии переработки и по меньшей мере один из реакторов - на стадии регенерации. Технический результат - упрощение способа, осуществление переработки в условиях, близких к изотермическим, исключение загрязнения атмосферы окисью углерода и продуктами неполного сгорания катализаторного кокса. 1 з.п. ф-лы, 1 ил., 1 пр.
Изобретение относится к способам получения дизельного топлива, углеводородного состава, преимущественно изомерного строения. Способ осуществляют путем одностадийной гидропереработки и изомеризации с использованием сырья растительного (биологического) происхождения, выбранного из растительных масел или липидов микроводорослей, в присутствии бифункционального гетерогенного катализатора. Катализатором является кристаллический силикоалюмофосфат с цеолитоподобной структурой, модифицированный металлом VIII группы Периодической таблицы, с дисперсностью введенного в состав катализатора металла - 14-60%, в количестве не более 10 мас.%. Предпочтительным является катализатор на основе силикоалюмофосфата со структурой SAPO-31. В способе используют смеси сырья растительного происхождения (жиры, масла, липиды микроводорослей) с гидроочищенным дизельным топливом. Технический результат - разбавление растительного сырья минеральным - позволяет повысить стабильность действия бифункционального катализатора и увеличить время его работы. 2 н. и 4 з.п. ф-лы, 1 табл.,15 пр.
Изобретение относится к способам утилизации отходов полимеров, а именно каталитической деструкции указанных отходов с получением моторных топлив и/или их компонентов
Изобретение относится к переработке различного нефтяного сырья, а именно газовых конденсатов и нефтяных дистиллятов с концом кипения не выше 400°С, в высокооктановые бензины, дизельное топливо марки «А» или топлива для реактивных двигателей
Изобретение относится к способу получения моторных топлив, а именно к каталитическому процессу получения дизельного топлива с улучшенными температурными характеристиками из ненефтяного сырья

Изобретение относится к способу получения моторных топлив, а именно к каталитическому процессу получения дизельного топлива с улучшенными температурными характеристиками из нефтяного сырья
Изобретение относится к способу получения ароматических углеводородов и низших олефинов, включающему каталитическую дегидроциклизацию углеводородного сырья в присутствии цинксодержащего цеолитного катализатора при повышенных температуре и давлении, разделение продуктов дегидроциклизации на продукт А - ароматические углеводороды С6+, и продукт В - смесь неароматических углеводородов с водородом, последующее гидродеалкилирование продукта А с получением товарного бензола, и пиролиз продукта В с получением низших олефинов, и характеризующемуся тем, что в качестве сырья дегидроциклизации используют парафины С2-С6, процесс проводят под давлением 0,9-1,3 МПа, продукт А, после отделения от него фракции С10+, подвергают гидродеалкилированию, из продуктов гидродеалкилирования выделяют товарный бензол, метановую и этановую фракции, этановую фракцию и продукт В, или продукт В, после отделения от него более 50 об.% метановодородной фракции, направляют на пиролиз, из газообразных продуктов пиролиза выделяют товарные этилен и пропилен, жидкие продукты пиролиза - пироконденсат, содержащий ароматические углеводороды, подвергают каталитическим гидрированию и гидрообессериванию и последующему гидродеалкилированию с получением товарного бензола, метановой и этановой фракций, последнюю рециклизуют на пиролиз
Изобретение относится к методу приготовления ряда кристаллических микропористых материалов, а именно силикоалюмофосфатов, различающихся типом кристаллической структуры, и может найти применение для приготовления адсорбентов и катализаторов в химической и нефтехимической промышленности

Изобретение относится к процессам переработки легких углеводородов в более ценные продукты - ароматические углеводороды, а также к способам приготовления катализатора получения ароматических углеводородов
Изобретение относится к нефтехимической и химической промышленности, в частности к способу получения катализаторов конверсии метана в ароматические углеводороды в неокислительных условиях
Изобретение относится к катализаторам получения моторных топлив с низким содержанием серы и способам приготовления таких катализаторов

Изобретение относится к каталитическим способам получения малосернистых дизельных топлив из углеводородного сырья с высоким содержанием серы
Изобретение относится к области нефтехимии, а именно к каталитическому способу получения изооктановых фракций путем алкилирования изобутана бутиленовыми фракциями

Изобретение относится к области процессов и аппаратов химической технологии и может быть использовано для процессов превращения легких углеводородов в ароматические углеводороды

Изобретение относится к области процессов и аппаратов химической технологии и может быть использовано для каталитического процесса получения бензинов и дизельного топлива из углеводородного сырья
Изобретение относится к способам переработки углеводородного сырья в ароматические углеводороды, а именно к катализаторам ароматизации легких углеводородов, к способам приготовления катализатора и способу получения ароматических углеводородов
Изобретение относится к нефтехимической и химической промышленности, в частности к способу получения катализаторов конверсии метана в ароматические углеводороды в неокислительных условиях

Изобретение относится к области процессов и аппаратов химической технологии и может быть использовано для осуществления гетерогенных каталитических реакций углеводородов
Изобретение относится к способу получения ZSM-5 цеолита, который можно использовать в качестве катализатора для превращения углеводородов по реакциям кислотно-основного или окислительно-восстановительного катализа
Изобретение относится к нефтехимической и химической промышленности, в частности к способу получения катализаторов конверсии метана в ароматические углеводороды в неокислительных условиях

 


Наверх