Способ приготовления катализатора и способ получения дизельного топлива с использованием этого катализатора

Изобретение относится к способу получения дизельного топлива с низкой температурой застывания, а именно зимнего и/или арктического дизельного топлива из летнего дизельного топлива. Описан способ приготовления катализатора для получения дизельного топлива в процессе депарафинизации дизельных фракций на основе цеолита алюмосиликатного либо галлийалюмосиликатного состава, выбранного из ряда ZSM-5, ZSM-11, либо их смесь, предварительно обработанного растворами органических или неорганических кислот и гранулированного с оксидом алюминия в качестве связующего, указанный пористый катализатор подвергают обработке перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч. Описан способ получения дизельного топлива в процессе депарафинизации дизельных фракций с температурой застывания не ниже минус 5°С при температуре не менее 280°С, в качестве катализатора используют катализатор, приготовленный описанным выше способом. Технический результат - увеличение выхода дизельной фракции с низкой температурой застывания из летнего дизельного топлива с температурой застывания не ниже минус 5°С и увеличение длительности межрегенерационного пробега катализатора. 2 н. и 2 з.п. ф-лы, 1 табл., 10 пр.

 

Изобретение относится к способу получения дизельного топлива с низкой температурой застывания, а именно, зимнего и/или арктического дизельного топлива из летнего дизельного топлива.

Климатические условия РФ обуславливают большую потребность в высококачественных низкозастывающих дизельных топливах, которая обеспечивается менее, чем наполовину. Для дизельных топлив требуемые показатели низкотемпературных характеристик достигаются в результате снижения содержания высококипящих н-парафинов C18+ при оптимальном соотношении с н-парафинами С1015, углеводородами изостроения и моноциклическими аренами, которые являются растворителями высококипящих алканов [Кинзуль А.П., Хандархаев С.В., Писаренко Н.О. и др. Совершенствование технологии производства низкозастывающих дизельных топлив // Мир нефтепродуктов. 2012. №8. С. 7-11.].

Потребность в зимнем и арктическом дизельном топливе в России достигает 30% от общего объема производства дизельного топлива, однако фактический объем его производства составляет около 17%. Дефицит низкозастывающих дизельных топлив связан с тем, что приходится снижать конец кипения исходной дизельной фракции до 300-320°С для зимних и до 280°С для арктических дизельных топлив [Митусова Т.Н. Дизельные топлива. От разработки и испытаний до нормативных документов на промышленное производство // Химия и технология топлив и масел. 2014. №5. С. 28-30].

Для улучшения низкотемпературных свойств дизельного топлива применяются 6 способов [Афанасьев И.П., Алексеев С.З., Ишмурзин А.В. и др. Разработка промышленной технологии производства зимнего дизельного топлива при последовательном совмещении процессов депарафинизации на катализаторе СГК-1 и гидрообессеривания на катализаторе КГУ-950 // Нефтепереработка и нефтехимия. 2014. №4. С. 3-6]:

- снижение конца кипения дизельной фракции, но это приводит к снижению выхода дизельного топлива;

- смешивание дизельного топлива с керосиновой фракцией, однако, это требует гидроочистки керосина;

- удаление н-парафинов методом экстрактивной кристаллизации (недостатки -периодичность процесса и низкое качество парафина);

- добавление депрессорно-диспергирующих присадок (малоэффективно для снижения температуры помутнения дизельного топлива);

- каталитическая изомеризация (недостаток - высокая стоимость катализаторов, содержащих металлы платиновой группы);

- каталитическая депарафинизация, при использовании которой снижается необходимость в дорогих металлах.

Наиболее близкими к предлагаемому изобретению по технической сущности являются процессы и катализаторы каталитической депарафинизации дизельных топлив.

На основе цеолита HZSM -5 фирмой Mobil Oil Со разработан катализатор и процесс каталитической депарафинизации получения дизельных топлив из различных видов сырья под общим названием Mobil Distillate Dewaxing (MDDW). Разработанный катализатор устойчив к действию сернистых и азотистых соединений. Значения параметров процесса MDDW зависит от требований к качеству целевого продукта, вида сырья, его пределов выкипания, вязкости и изменяется в следующих интервалах: давление 2,8-6,0 МПа, объемная скорость подачи сырья 1-2 ч-1, подача водорода 200-440 нм33 сырья. По мере снижения активности катализатора температуру повышают до 400°С для получения продукта с требуемой температурой застывания. Затем проводят реактивацию катализатора путем продувки его водородсодержащим газом в течение 24 ч при температуре 400-450°С. Продолжительность цикла между реактивациями составляет 14 недель. Окислительную регенерацию катализатора проводят через 6 мес. [Коновальчиков О.Д., Поезд Д.Ф., Красильникова Л.Ф. и др. Катализаторы и процессы гидродепарафинизации нефтяных фракций. М.: ЦНИИТЭнефтехим, 1994. - 51 с.].

Отечественный аналог - цеолит ЦВМ, на основе которого выпускается катализатор селективного гидрокрекинга СГК-1. Разработана технология синтеза нового катализатора ДЕП-23, включающая следующие стадии [Киселева Т.П., Алиев P.P., Скорникова С.А. Усовершенствованные катализаторы депарафинизации для получения низкозастывающего дизельного топлива // Нефтепереработка и нефтехимия. 2014. №9. С. 16-19]:

- гидротермальную обработку силикагеля;

- введение промотирующей добавки - соединения цинка;

- пропитку носителя молибден-фосфорным раствором.

Разработанный катализатор обладает хорошими прочностными свойствами и обеспечивает повышение выхода дизельного топлива с более низкой температурой застывания в сравнении с катализатором СГК-1.

Основными недостатками существующих способов уменьшения содержания н-парафинов в исходной дизельной фракции является необходимость использования водорода для поддержания активности катализатора и необходимость введения в состав цеолитного катализатора гидрирующего компонента. Поэтому актуальной становится необходимость создания способа получения дизельного топлива с улучшенными низкотемпературными характеристиками из летнего дизельного топлива, который не предполагал бы использование в процессе водородсодержащего газа, а также использование катализаторов, содержащих благородные металлы.

Наиболее близким к заявляемому способу получения дизельного топлива с низкой температурой застывания является «Способ получения дизельного топлива», описанный в Пат. РФ №2261266, C10G 11/05, 27.09.2005. В соответствии с этим способом переработку дизельных фракций с температурой кипения 160-360°С проводят в присутствии пористого катализатора на основе цеолита, выбранного из ряда ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23, ZSM-35, ZSM-48, морденит, Вета, предварительно обработанного растворами органических или неорганических кислот, при температуре не менее 200°С, давлении не более 3 МПа, массовых расходах углеводородов не более 20 ч-1. При этом, как следует из примеров, приведенных в описании данного способа, выход дизельной фракции на пропущенное сырье не превышает 89-93 мас %.

При переработке по данному способу длительность межрегенерационного периода работы катализатора составляет не более 200-250 ч, что связано с его закоксованием.

Таким образом, основными недостатками указанного способа, взятого за прототип, является недостаточно высокий выход дизельной фракции с низкой температурой застывания, а также невысокий межрегенерационный период.

Предлагаемое изобретение решает задачу создания улучшенного процесса получения дизельного топлива с низкой температурой застывания.

Технический результат - увеличение выхода дизельной фракции с низкой температурой застывания из летнего дизельного топлива с температурой застывания не ниже минус 5°С и увеличение длительности межрегенерационного пробега катализатора.

Поставленная задача решается предлагаемым способом приготовления катализатора.

В качестве пористого катализатора используют цеолит алюмосиликатного либо галлийалюмосиликатного состава, выбранный из ряда ZSM-5, ZSM-11, либо их смесь, предварительно обработанный растворами органических или неорганических кислот, гранулированный с оксидом алюминия в качестве связующего. Существенным отличительным признаком предлагаемого способа от прототипа является то, что указанный пористый катализатор на основе цеолита, используемый для производства дизельного топлива с улучшенными температурными характеристиками из летнего дизельного топлива с температурой не ниже минус 5°С, предварительно подвергается обработке перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч.

Задача решается также способом переработки летнего дизельного топлива с температурой застывания не ниже минус 5°С при температурах реакции не ниже 280°С, давлении не более 0.3 МПа и массовых расходах сырья не менее 5 ч-1. А в качестве катализатора используют твердый пористый катализатор, описанный выше и предварительно подвергнутый обработке перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч.

Предварительная обработка перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч приводит, во-первых, к уменьшению общей кислотности катализатора и, как следствие, к увеличению выхода дизельной фракции с низкой температурой застывания, а во-вторых, к удалению активных центров коксообразования с внешней поверхности пористого катализатора и, как следствие, к увеличению длительности межрегенерационного пробега катализатора.

В процессе переработки летнего дизельного топлива в присутствии указанного катализатора происходит селективное превращение парафинов нормального строения с образованием как изомерных углеводородов, так и легких углеводородов вследствие крекинга.

Сущность изобретения иллюстрируется следующими примерами и таблицами.

Примеры 1-2 иллюстрируют прототип.

Пример 1 (прототип)

Техническая характеристика исходной углеводородной смеси дизельной фракции:

цетановое число 53
температура начала кипения 150°С
температура конца кипения 370°С
температура застывания минус 5°С

30 г порошка алюмосиликата со структурой ZSM-5 кипятят в присутствии водного раствора сульфосалициловой кислоты в течение 6 ч. Полученный образец сушат при 100°С, гранулируют с 20% оксида алюминия в качестве связующего и прокаливают при 550°С, после чего готовят фракцию 0.2-0.8 мм.

10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и при давлении 0.3 МПа начинают подачу указанной фракции углеводородов с весовой скоростью подачи 5 ч-1. Через 7 ч после начала реакции выход углеводородов дизельной фракции в расчете на поданное сырье составляет 85 мас %.

Температура застывания дизельной фракции - минус 49°С.

Пример 2 (прототип)

Дизельная фракция по примеру 1

30 г порошка галлийалюмосиликата со структурой ZSM-11 кипятят в присутствии водного раствора азотной кислоты в течение 6 ч, а затем в водном растворе нитрата лантана в течение 8 ч. Полученный образец сушат при 100°С, гранулируют с 20% оксида алюминия в качестве связующего и прокаливают при 550°С, после чего готовят фракцию 0.2-0.8 мм.

10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и при давлении 0.3 МПа начинают подачу указанной фракции углеводородов с весовой скоростью подачи 6 ч-1. Через 7 ч после начала реакции выход углеводородов дизельной фракции в расчете на поданное сырье составляет 89 мас %.

Температура застывания дизельной фракции - минус 57°С.

Примеры 3-10 иллюстрируют предлагаемый способ.

Пример 3

Дизельная фракция по примеру 1

30 г порошка алюмосиликата со структурой ZSM-5 кипятят в присутствии водного раствора сульфосалициловой кислоты в течение 6 ч. Полученный образец сушат при 100°С, гранулируют с 20% оксида алюминия в качестве связующего и прокаливают при 550°С, затем подвергают обработке перегретым водяным паром при температуре 650°С в течение 7 ч, после чего готовят фракцию 0.2-0.8 мм.

10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и при давлении 0.3 МПа начинают подачу указанной фракции углеводородов с весовой скоростью подачи 5 ч-1. Через 7 ч после начала реакции выход углеводородов дизельной фракции в расчете на поданное сырье составляет 98 мас %.

Температура застывания дизельной фракции - минус 47°С.

Пример 4

Дизельная фракция по примеру 1

30 г порошка галлийалюмосиликата со структурой ZSM-11 кипятят в присутствии водного раствора азотной кислоты в течение 6 ч, а затем в водном растворе нитрата лантана в течение 8 ч. Полученный образец сушат при 100°С, гранулируют с 20% оксида алюминия в качестве связующего и прокаливают при 550°С, затем подвергают обработке перегретым водяным паром при температуре 650°С в течение 7 ч, после чего готовят фракцию 0.2-0.8 мм.

10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и при давлении 0.3 МПа начинают подачу указанной фракции углеводородов с весовой скоростью подачи 5 ч-1. Через 7 ч после начала реакции выход углеводородов дизельной фракции в расчете на поданное сырье составляет 97 мас %.

Температура застывания дизельной фракции - минус 49°С.

Пример 5

Дизельная фракция по примеру 1

Катализатор готовят в соответствии с примером 3. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 280°С и при давлении 0.3 МПа начинают подачу указанной фракции углеводородов с весовой скоростью подачи 5 ч-1. Через 7 ч после начала реакции выход углеводородов дизельной фракции в расчете на поданное сырье составляет 98.5 мас %.

Температура застывания дизельной фракции - минус 45°С.

Пример 6

Дизельная фракция по примеру 1

Катализатор готовят в соответствии с примером 4. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 280°С и при давлении 0.3 МПа начинают подачу указанной фракции углеводородов с весовой скоростью подачи 5 ч-1. Через 7 ч после начала реакции выход углеводородов дизельной фракции в расчете на поданное сырье составляет 98 мас %.

Температура застывания дизельной фракции - минус 46°С.

Пример 7

Дизельная фракция по примеру 1

Катализатор готовят в соответствии с примером 3. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 320°С и при давлении 0.3 МПа начинают подачу указанной фракции углеводородов с весовой скоростью подачи 8 ч-1. Через 7 ч после начала реакции выход углеводородов дизельной фракции в расчете на поданное сырье составляет 99 мас %.

Температура застывания дизельной фракции - минус 41°С.

Пример 8

Дизельная фракция по примеру 1

Катализатор готовят в соответствии с примером 4. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 320°С и при давлении 0.3 МПа начинают подачу указанной фракции углеводородов с весовой скоростью подачи 8 ч-1 Через 7 ч после начала реакции выход углеводородов дизельной фракции в расчете на поданное сырье составляет 98.5 мас %.

Температура застывания дизельной фракции - минус 43°С.

Пример 9

Дизельная фракция по примеру 1

Катализатор готовят в соответствии с примером 3. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и при давлении 1.3 МПа начинают подачу указанной фракции углеводородов с весовой скоростью подачи 6 ч-1. Через 7 ч после начала реакции выход углеводородов дизельной фракции в расчете на поданное сырье составляет 96.5 мас %. Температура застывания дизельной фракции - минус 44°С.

Пример 10

Дизельная фракция по примеру 1

Катализатор готовят в соответствии с примером 4. 10 г полученного катализатора помещают в проточный реактор, продувают азотом с объемной скоростью 350 ч-1 в течение 1 ч при 550°С, после чего прекращают подачу азота и при температуре 340°С и при давлении 1.3 МПа начинают подачу указанной фракции углеводородов с весовой скоростью подачи 6 ч-1. Через 7 ч после начала реакции выход углеводородов дизельной фракции в расчете на поданное сырье составляет 95.5 мас %.

Температура застывания дизельной фракции - минус 50°С.

Для определения длительности межрегенерационного периода катализаторы испытывались при давлении 0,3 МПа и весовой скорости подачи 5 ч-1 в режиме с подъемом температуры в интервале 280-430°С.Сырьем служила дизельная фракция по примеру 1. Подъем температуры осуществлялся при снижении температуры застывания дизельной фракции выше минус 45°С. Результаты приведены в таблице.

1. Способ приготовления катализатора для получения дизельного топлива в процессе депарафинизации дизельных фракций, включающий обработку цеолита алюмосиликатного либо галлийалюмосиликатного состава, выбранного из ряда ZSM-5, ZSM-11, либо их смесь, растворами органических или неорганических кислот, и гранулированного с оксидом алюминия в качестве связующего, с последующей сушкой и прокалкой, отличающийся тем, что полученный пористый катализатор подвергают дополнительной обработке перегретым водяным паром при температуре выше 650°С в течение не менее 5 ч.

2. Способ получения дизельного топлива в процессе депарафинизации дизельных фракций с температурой застывания не ниже минус 5°С при температуре не менее 280°С, отличающийся тем, что в качестве катализатора используют катализатор, приготовленный по п. 1.

3. Способ по п. 2, отличающийся тем, что процесс ведется при давлении не более 0.3 МПа и массовых расходах сырья не менее 5 ч-1.

4. Способ по п. 2, отличающийся тем, что процесс проводят в режиме с подъемом температуры в интервале 280-430°С.



 

Похожие патенты:

Настоящее изобретение относится к новым катализаторам каталитического крекинга с псевдоожиженным слоем катализатора, содержащим микросферы, и к способу каталитического крекинга с псевдоожиженным слоем катализатора.

Изобретение относится к способу переработки тяжелых нефтяных фракций, включающему предварительное введение в сырье - тяжелые нефтяные фракции - водного раствора соли аммония и переходного металла, взаимодействие указанной соли с серосодержащим агентом, получение микроэмульсии серосодержащей соли переходного металла в сырье, крекинг сырья при повышенной температуре в присутствии катализатора и разделение продуктов реакции.

Предложен способ приготовления микросферического катализатора для крекинга нефтяных фракций, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, двухстадийную ультрастабилизацию цеолита, смешение цеолита с матрицей, в качестве компонентов которой используют аморфный алюмосиликат, оксид алюминия и природную глину, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора.

Предложен микросферический катализатор для крекинга нефтяных фракций, включающий ультрастабильный цеолит Y в катион-декатионированной форме и матрицу, в качестве компонентов которой используют аморфный алюмосиликат, оксид алюминия и природную глину.

Настоящее изобретение относится к модифицированному металлом цеолиту типа Y для использования в качестве катализатора каталитического крекинга, который содержит 1-15 вес.

Каталитическая микросфера каталитического крекинга со взвешенным катализатором, содержащая цеолит, где указанная микросфера сформирована из пульпы, содержащей: i) каолин, который прокаливали вне его экзотермического перехода; и или ii) кристаллы цеолита, или iii) гидратированный каолин и/или метакаолин, пульпа была смешана с 0.005-0.5 мас.% катионоактивного полиэлектролита относительно массы i) + ii) или i) + iii) перед или во время формирования указанной микросферы.

Группа изобретений относится к цеолитсодержащим материалам и их использованию в качестве катализаторов. Предложен катализатор безводородной депарафинизации углеводородного сырья, в частности дизельного топлива, на основе гранулированной смеси алюмосиликатного цеолита ZSM-5 с мольным отношением SiO2/Al2O3, равным 23-80, со связующим (Al2O3 или SiO2), модифицированной фторидом цинка до 1,5-5,0%-ного содержания цинка, характеризующийся остаточным содержанием ионов натрия менее 0,1%.

Изобретение относится к цеолитсодержащим материалам и их использованию в качестве катализатора. Предложен катализатор для безводородной депарафинизации сырья, в частности дизельного топлива, на основе алюмосиликатного цеолита ZSM-5, который характеризуется мольным отношением SiO2/Al2O3, равным 23-80, остаточным содержанием ионов натрия менее 0,1% и модифицирован оксидом цинка в количестве 1,0-4,0 мас.% (в пересчете на цинк).

Настоящее изобретение относится к катализатору каталитического крекинга, который содержит цеолит, содержащий редкоземельный элемент, и к способу его получения, причем катализатор каталитического крекинга содержит активный компонент крекинга, необязательный мезопористый алюмосиликатный материал, глину и связующее, в котором указанный активный компонент крекинга содержит, состоит по существу из или состоит из РЗЭ-содержащего Y-цеолита, необязательного другого Y-цеолита и необязательного МФИ-структурированного цеолита, причем указанный РЗЭ-содержащий Y-цеолит имеет содержание редкоземельного элемента в расчете на оксид резкоземельного элемента 10-25 мас.%, например 11-23 мас.%, размер ячейки 2,440-2,472 нм, например 2,450-2,470 нм, кристалличность 35-65%, например 40-60%, атомное соотношение Si/Al в каркасе 2,5-5,0 и произведение отношения интенсивности I1 пика при 2θ=1,8±0,1° к интенсивности I2 пика при 2θ=12,3±0,1° (Ι1/Ι2) на рентгенограмме цеолита и массового процентного содержания редкоземельного элемента в расчете на оксид резкоземельного элемента в цеолите более 48, например более 55.

Изобретение относится к катализатору для каталитического крекинга углеводородов. Катализатор содержит катализатор (a), содержащий цеолит (A) типа фожазита, имеющий размер кристаллической ячейки в интервале от 2,435 нм до 2,455 нм, матричный компонент и редкоземельные элементы; и катализатор (b), содержащий цеолит (B) типа фожазита, имеющий размер кристаллической ячейки в интервале от 2,445 нм до 2,462 нм, матричный компонент, фосфор и магний.

Изобретение относится к непрерывному способу получения пропиленоксида. Предложенный способ включает: (i) предоставление жидкого потока поступающего материала, содержащего пропен, перекись водорода, ацетонитрил, воду, необязательно пропан и, по меньшей мере, одну растворенную калиевую соль оксикислоты фосфора; (ii) подачу жидкого потока поступающего материала, предоставленного на стадии (i), в реактор эпоксидирования, содержащий катализатор, содержащий титановый цеолит структурного типа MWW, содержащий цинк, и воздействие на жидкий поток поступающего материала условий реакции эпоксидирования в реакторе эпоксидирования с получением реакционной смеси, содержащей пропиленоксид, ацетонитрил, воду, по меньшей мере, одну растворенную калиевую соль оксикислоты фосфора, необязательно пропен и необязательно пропан; (iii) удаление отходящего потока из реактора эпоксидирования, причем отходящий поток содержит пропиленоксид, ацетонитрил, воду, по меньшей мере, часть, по меньшей мере, одной растворенной калиевой соли оксикислоты фосфора, необязательно пропен и необязательно пропан.

Изобретение описывает способ регенерации катализатора, содержащего титансодержащий цеолит в качестве каталитически активного материала, причем указанный катализатор использовался в способе получения оксида олефина, который включает: (i) обеспечение смеси, содержащей органический растворитель, олефин, эпоксидирующий агент и, по меньшей мере, частично растворенную калийсодержащую соль; (ii) воздействие на смесь, обеспеченную на стадии (i), в реакторе посредством условий эпоксидирования в присутствии катализатора с получением смеси, содержащей органический растворитель и оксид олефина, и с получением катализатора, содержащего осажденную на нем калиевую соль; причем указанный способ регенерации включает: (a) отделение смеси, полученной на стадии (ii), от катализатора; (b) промывку катализатора, полученного на стадии (а), с помощью жидкой водной системы, которая содержит менее чем 0,1 вес.

Изобретение относится к непрерывному способу получения пропиленоксида, который включает в себя (i) обеспечение жидкого потока поступающего материала, содержащего пропен, перекись водорода, ацетонитрил, воду, растворенный дигидрофосфат калия и необязательно пропан; (ii) подачу жидкого потока поступающего материала, обеспеченного на стадии (i), в реактор эпоксидирования, содержащий катализатор, содержащий титановый цеолит структурного типа MWW, и воздействие на жидкий поток поступающего материала условий реакции эпоксидирования; (iii) удаление отходящего потока из реактора эпоксидирования.

Изобретение относится к каталитической композиции для обработки выхлопных газов. Композиция представляет собой композицию на основе оксидов циркония, церия, ниобия и олова с массовым содержанием оксида церия 5-50%, оксида ниобия - 5-20%, оксида олова – 1-10% и с содержанием оксида циркония, составляющим остальное количество.

Изобретение относится к непрерывному способу получения пропиленоксида, который включает в себя (i) обеспечение жидкого потока поступающего материала, содержащего пропен, перекись водорода, ацетонитрил, воду, необязательно пропан и, по меньшей мере, одну растворенную калиевую соль; (ii) подачу потока поступающего материала, обеспеченного на стадии (i), в реактор эпоксидирования, содержащий катализатор, содержащий титановый цеолит с каркасной структурой типа MWW, и воздействие на поток поступающего материала условий реакции эпоксидирования в реакторе эпоксидирования с получением реакционной смеси, содержащей пропиленоксид, ацетонитрил, воду, по меньшей мере, одну калиевую соль, необязательно пропен и необязательно пропан; (iii) удаление отходящего потока из реактора эпоксидирования, причем отходящий поток содержит пропиленоксид, ацетонитрил, воду, по меньшей мере, часть, по меньшей мере, одной калиевой соли, необязательно пропен и необязательно пропан.

Настоящее изобретение относится к катализатору для получения акриловой кислоты на основе биологического сырья, содержащей анионы фосфата и, по меньшей мере, один одновалентный катион и, по меньшей мере, один многовалентный катион.

Предложен катализатор облагораживания тяжелого нефтяного сырья состава MoS2/MoO2, представляющий собой наночастицы на основе Mo-содержащих фаз, формирующийся «in situ» в присутствии воды с размерами 4-330 нм, содержанием фазы MoS2 5-82 мас.%, координационное число фаз MoS2 и MoO2 3,0-5,0 и 4,0-6,0.

Изобретение относится к способу эпоксидирования олефина, в котором смесь, содержащую олефин, пероксид водорода, воду и метанол, при отношении массы воды к массе метанола, составляющем менее 1, пропускают через неподвижный слой катализатора, содержащий формованный титаново-силикалитный катализатор, степень разрушения катализатора уменьшают путем кондиционирования сухого катализатора первой кондиционирующей жидкостью, содержащей более 60 мас.% воды и менее 40 мас.% метанола, и по меньшей мере одной другой кондиционирующей жидкостью, содержащей воду и от 25 до 45 мас.

Изобретение относится к неорганической химии, в частности к способам получения кристаллических цеолитных материалов, обладающих микро-мезопористой структурой и кислотными свойствами.

Изобретение относится к способу приготовления фосфорсодержащего катализатора, включающему следующие стадии: (a) экструдирование смеси, которая содержит цеолит и оксид алюминия или гидрат оксида алюминия, в качестве связующего, (b) кальцинирование полученного на стадии (а) экструдата, (c) обработка полученного на стадии (b) кальцинированного экструдата водяным паром, (d) нанесение фосфорсодержащего соединения на обработанный водяным паром экструдат со стадии (с) и (e) кальцинирование модифицированного фосфором экструдата со стадии (d), причем массовая доля фосфора в полученном после стадии (е) катализаторе составляет от 0,8 до 2,5 мас.

Предложен катализатор для риформинга бензиновых фракций, гидрирования бензольной фракции или ароматических углеводородов, содержащий оксид алюминия, платину, цеолит со структурой ZSM-5 или ZSM-11.
Наверх