Состав шихтовой заготовки жаропрочного сплава на основе никеля с равноосной структурой для литья рабочих лопаток газотурбинных установок



Состав шихтовой заготовки жаропрочного сплава на основе никеля с равноосной структурой для литья рабочих лопаток газотурбинных установок
Состав шихтовой заготовки жаропрочного сплава на основе никеля с равноосной структурой для литья рабочих лопаток газотурбинных установок

 


Владельцы патента RU 2562202:

Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" (RU)

Изобретение относится к металлургии и может быть использовано для изготовления рабочих лопаток газотурбинных установок. Шихтовая заготовка содержит, мас.%: углерод 0,07-0,12, хром 12,9-13,5, кобальт 5,3-5,9, вольфрам 6,7-7,3, молибден 0,8-1,2, алюминий 3,2-3,5, титан 4,4-4,7, бор 0,010-0,015, медь ≤0,04, сера ≤0,005, фосфор ≤0,005, азот ≤15 ppm, кислород ≤15 ppm, кальций 0,00-0,02, магний 0,00-0,02, марганец 0,01-0,3, по меньшей мере два элемента, выбранные из группы: железо, кремний и барий, ≤0,2 каждого и по меньшей мере два элемента, выбранные из группы: иттрий, лантан, неодим, самарий, 0,005-0,05 каждого, никель - остальное. Обеспечивается повышение структурной однородности и длительной прочности лопаток с равноосной структурой, полученных литьем с использованием шихтовой заготовки, повышение сопротивления окислению и коррозионным воздействиям, повышение структурной стабильности на ресурс, повышение прочности и пластичности. 2 з.п. ф-лы, 2 табл.

 

Изобретение относится к металлургии, в частности к составам шихтовых заготовок жаропрочных сплавов на основе никеля с хромом, кобальтом, вольфрамом, молибденом, и может быть использовано для изготовления литьем рабочих лопаток с равноосной структурой, используемых в горячем тракте газотурбинных установок (ГТУ) и работающих в агрессивных средах при температурах 700-870°C.

Технологический процесс изготовления литьем рабочих лопаток горячего тракта ГТУ включает подготовку навески шихтовых материалов по требованиям химического состава, получение расплава навески, рафинирование и раскисление расплава, слив расплава с получением отвержденной шихтовой заготовки, ее механообработку для удаления внешних дефектов и продуктов взаимодействия расплава с материалом тигля, контроль (качественный и количественный) химического состава шихтовой заготовки, оценку расчетными методами служебных характеристик лопаток из полученной шихтовой заготовки, расплавление шихтовой заготовки и литье рабочих лопаток, в частности лопаток с равноосной структурой. При этом шихтовая заготовка является продуктом, который его производитель поставляет потребителю для изготовления лопаток ГТУ.

Отдельные служебные характеристики рабочей лопатки по результатам (качественного и количественного) анализа состава ее шихтовой заготовки, в том числе структурная стабильность на ресурс (исключение образования охрупчивающих фаз), склонность к выделению в литом состоянии неравновесных эвтектических фаз, на месте которых при термообработке литых лопаток образуются поры и трещины, характеристики длительной прочности, критические точки металла лопатки и другие физико-механические свойства лопатки могут быть оценены по известной методике ФАКОМП и другим по известным методикам.

(H. Harada и др., Сб. Superalloys, 1988; pp. 733-742; H. Harada и др., Сб. Superalloys, 2000; pp. 729-736; H. Harada, Сб. Alloys Design for Nickel-base Superalloys, 1982, pp. 721-735)

Известен состав шихтовой заготовки на основе никеля для литья изделий, преимущественно лопаток газотурбинных двигателей. Известный состав шихтовой заготовки включет углерод, никель, хром, кобальт, вольфрам, молибден, алюминий, титан, магний или кальций, редкоземельные металлы церий и иттрий, серу, азот и кислород.

(RU 2392338, C22C 1/02, опубликовано 20.06.2010, пример 2)

Известна жаропрочная шихтовая заготовка на основе никеля для литья лопаток газотурбинных двигателей, состав которой включает углерод, никель, хром, кобальт, вольфрам, молибден, алюминий, рений, тантал, церий, иттрий, лантан, серу, азот, кислород.

(RU 2190680, C22C 1/02, C21C 5/52, C22B 7/00, опубликовано 10.10.2002)

Наиболее близкой по технической сущности и достигаемому результату является шихтовая заготовка жаропрочного сплава на основе никеля с равноосной структурой для применения в газовых турбинах, включающая углерод, хром, кобальт, вольфрам, молибден, алюминий, титан, бор, тантал, цирконий, гафний, кремний, железо, медь, серу, фосфор, азот, кислород и никель при следующих соотношениях компонентов, мас.%: углерод 0,04-0,12; хром 11,5-12,5; кобальт 11,5-12,5; вольфрам 3,3-3,7; молибден 1,7-2,1; алюминий 3,35-3,65; титан 4,85-5,15; бор 0,01-0,02; тантал 2,3-2,7; цирконий 0,0-20 ppm; гафний 0,0-0,05; кремний менее 0,05; железо 0,0-0,15; медь 0,0-0,10; сера 0,0-0,0012, фосфор 7-10 ppm; азот 0,0-25 ppm; кислород 0,0-10 ppm и никель - остальное.

(RU 2443792, C22C 19/05, опубликовано 27.02.2012)

Регламентирование в известном составе шихтовой заготовки содержания элементов, определяющих состояние границ зерен и междендритных областей, позволяет достигнуть достаточно высоких характеристик сплава по жаропрочности и коррозионной стойкости. Однако литая лопатка, полученная с использованием известной шихтовой заготовки, будет иметь недостаточно высокие характеристики кратковременной и длительной пластичности, а также значительный разброс прочностных характеристик. Кроме того, структура такой лопатки в равноосном состоянии будет иметь большое количество неравновесной эвтектики (до 6%), а также пониженную стабильность на ресурс в результате выделения в процессе наработки до 3% охрупчивающей σ-фазы.

Задачей и техническим результатом изобретения является обеспечение повышенной структурной однородности и повышение длительной прочности металла лопаток с равноосной структурой, полученных литьем с использованием предлагаемой шихтовой заготовки, в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, повышение структурной стабильности на ресурс, повышение минимально гарантированных и средних значений прочности и пластичности.

Технический результат достигается тем, что шихтовая заготовка жаропрочного сплава на основе никеля для литья рабочих лопаток газотурбинных установок включает углерод, хром, кобальт, вольфрам, молибден, алюминий, титан, бор, медь, серу, фосфор, азот, кислород кальций, магний, марганец и никель, а также по меньшей мере два элемента, выбранных из группы: железо, кремний и барий; и два элемента, выбранных из группы: иттрий, лантан, неодим и самарий, при следующем соотношении компонентов, мас.%: углерод 0,07-0,12; хром 12,9-13,5; кобальт 5,3-5,9; вольфрам 6,7-7,3; молибден 0,8-1,2; алюминий 3,2-3,5; титан 4,4-4,7; бор 0,010-0,015; медь ≤0,04; сера ≤0,005; фосфор ≤0,005; азот ≤15 ppm; кислород ≤15 ppm; кальций ≤0,02; магний ≤0,02; марганец 0,01-0,30; по меньшей мере два элемента, выбранные из группы: железо, кремний и барий, ≤0,2 каждого и по меньшей мере два элемента, выбранные из группы: иттрий, лантан, неодим, самарий, 0,005-0,05 каждого, никель - остальное.

Технический результат также достигается тем, что состав шихтовой заготовки дополнительно содержит ниобий в количестве ≤0,20 мас.%; суммарное содержание алюминия и титана составляет 7,6-8,2 мас.%, а отношение содержания титана к содержанию алюминия - более 1,3.

При изготовлении из шихтовой заготовки по изобретению металл лопатки с равноосной структурой должен иметь 48-51 об.% упрочняющей γ'-фазы, которая оптимально легирована тугоплавкими вольфрамом и молибденом, что должно обеспечить высокий уровень металла рабочих лопаток по жаропрочности: 278-283 МПа за 103 часов эксплуатации при 850°C.

Ограничение содержания газов: кислорода и азота, а также содержания серы и фосфора при наличии в шихтовой заготовке кальция и магния в сочетании со значительным количеством хрома, марганца, отношением содержания титан/алюминий более 1,3 и по меньшей двух компонентов, выбранных из группы: железо, кремний и барий, способствует повышению коррозионной стойкости не только тела зерен, но, что особенно важно, границ зерен в рабочем диапазоне температур 700-870°C.

Введение ниобия стабилизирует упрочняющую γ'-фазу, измельчает карбиды и улучшает морфологию карбидных фаз, что повышает пластичность металла лопатки. Особенно эффективно это происходит в присутствии кальция и марганца, а также при наличии в составе шихтовой заготовки по меньшей мере двух дополнительных компонентов, выбранных из группы: иттрий, лантан, неодим и самарий.

Оптимальные концентрации компонентов и их соотношения в шихтовой заготовке по изобретению исключают появление в процессе наработки охрупчивающих фаз и ограничивают (до 1 об.%) неравновесной эвтектической γ'-фазы, что обеспечивает уменьшение объема газоусадочной пористости и повышает устойчивость изделия при литье к образованию трещин, что обуславливает повышение выхода годного.

Изобретение может быть проиллюстрировано примерами, представленными в таблицах 1-2.

Изготовление шихтовой заготовки, предназначенной для литья лопаток и других изделий с равноосной структурой, включает подготовку навески шихтовых материалов по требованиям химического состава, получение расплава навески, рафинирование и раскисление расплава, слив расплава и его отверждение. После этого шихтовую заготовку механически обрабатывают для удаления внешних дефектов и продуктов взаимодействия расплава с материалом тигля, проводят контроль (качественный и количественный) химического состава шихтовой заготовки и оценивают расчетными методами служебных характеристик лопаток из полученной шихтовой заготовки.

В таблице 1 приведены составы шихтовых заготовок для литья рабочих лопаток, полученных методом равноосного литья. Оценка служебных характеристик была сделана для рабочих лопаток с равноосной структурой, полученных известными способами и устройствами для литья турбинных лопаток из жаропрочных сплавов. Термообработка литья включает гомогенизирующий отжиг при температурах около 1230°C в течение 2-4 часов.

Из представленных данных видно, что рабочая лопатка с равноосной структур, полученная с использованием шихтовой заготовки по изобретению, при примерно равных значений жаропрочности в диапазоне рабочих температур 800-870°C значительно (примерно в три раза) превосходит по коррозионной стойкости аналогичную рабочую лопатку из известной шихтовой заготовки и в ней не прогнозируется выделение охрупчивающих фаз в процессе наработки.

Достигаемое повышенное сопротивление агрессивным воздействиям среды позволяет увеличить эксплуатационную надежность и срок службы лопаток с равноосной структурой и, как следствие, позволяют снизить годовую потребность в металле.

Более низкие значения показателей Mdy и Nv металла лопаток, полученных с использованием шихтовой заготовки по изобретению, по сравнению с критическими величинами Mdy ≤0,928 и Nv ≤2,36 свидетельствуют о том, что металл лопатки обладает повышенной структурной стабильностью на ресурс. При этом заданные интервалы компонентов в шихтовой заготовке по изобретению должны обеспечить повышение минимально гарантированных и средних значений служебных характеристик рабочих лопаток при минимальном разбросе их значений. Кроме того, стоимость шихтовой заготовки по изобретению меньше стоимости известной шихтовой заготовки на 30-40%.

1. Шихтовая заготовка жаропрочного сплава на основе никеля для литья рабочих лопаток газотурбинных установок, включающая углерод, хром, кобальт, вольфрам, молибден, алюминий, титан, бор, медь, серу, фосфор, азот, кислород и никель, отличающаяся тем, что она дополнительно содержит кальций, магний и марганец, по меньшей мере два элемента, выбранных из группы: железо, кремний и барий, и по меньшей мере два элемента, выбранных из группы: иттрий, лантан, неодим и самарий, при следующем соотношении компонентов, мас.%:

углерод 0,07-0,12
хром 12,9-13,5
кобальт 5,3-5,9
вольфрам 6,7-7,3
молибден 0,8-1,2
алюминий 3,2-3,5
титан 4,4-4,7
бор 0,010-0,015
медь ≤0,04
сера ≤0,005
фосфор ≤0,005
азот ≤15 ppm
кислород ≤15 ppm
кальций ≤0,02
магний ≤0,02
марганец 0,01-0,30
по меньшей мере два элемента,
выбранные из группы:
железо, кремний и барий ≤0,2 каждого
по меньшей мере два элемента,
выбранные из группы:
иттрий, лантан, неодим и самарий 0,005-0,05 каждого
никель остальное

2. Шихтовая заготовка по п. 1, отличающаяся тем, что она дополнительно содержит ниобий в количестве ≤0,20 мас.%.

3. Шихтовая заготовка по п. 1, отличающаяся тем, что суммарное содержание алюминия и титана составляет 7,6-8,2 мас.%, а отношение содержания титана к содержанию алюминия - более 1,3.



 

Похожие патенты:

Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе системы никель-хром, работающих в широком диапазоне температур и предназначенных для реализации микрометаллургических процессов получения функциональных покрытий на основе порошковых материалов и литых микропроводов с высокой микротвердостью.

Изобретение относится к области металлургии, а именно к припоям на основе никеля, которые могут использоваться при изготовлении паяных деталей горячего тракта турбин газотурбинных двигателей.

Изобретение может быть использовано в двигателестроении. Выпускной клапан (1) предназначен для использования в двигателе внутреннего сгорания.

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, имеющим высокие значения горячей обрабатываемости, ударной вязкости и пластичности после долговременного использования.
Изобретение относится к металлургии жаропрочных сплавов для сварочной проволоки и может быть использовано для сварки деталей из высоконикелевых сплавов высокотемпературных установок с температурой эксплуатации до 950оC.

Изобретение относится к области металлургии, в частности к стойким к окислению сплавам на основе никеля. Стойкий к окислению сплав никеля содержит, мас.%: 4-7 Cr, 4-5 Si, 0,1-0,2 Y, 0,1-0,2 Mg, 0,1-0,2 Hf, Ni и неизбежные примеси - остальное.

Изобретение относится к области металлургии, в частности к сплавам для защитного покрытия конструктивного элемента газовой турбины от коррозии и/или окисления. Защитное покрытие для защиты конструктивного элемента газовой или паровой турбины от коррозии и/или окисления, в частности, при высоких температурах, выполненное в виде одиночного металлического слоя из сплава, содержащего, вес.%: 24-26 кобальта, 12-14 хрома, 10-12 алюминия, 0,2-0,5 по меньшей мере одного элемента из группы, включающей в себя скандий и редкоземельные элементы, никель - остальное.

Изобретение относится к области металлургии, в частности к сплавам на основе никеля для изготовления механических компонентов турбомашин. Суперсплав на основе никеля для механических компонентов турбомашин содержит, мас.%: хром - от 3 до 7, вольфрам - от 3 до 15, тантал - от 4 до 6, алюминий - от 4 до 8, углерод менее 0,8, никель и примеси - остальное.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, предназначенным для элементов, используемых в атомной энергетике, нефтехимической и нефтеперерабатывающей промышленности, работающих при высоких температурах.

Изобретение относится к области металлургии, в частности, к дисперсионно-упрочненным жаропрочным сплавам на основе никеля и может быть использовано в качестве материала для трубчатой оболочки тепловыделяющего элемента реакторов на быстрых нейтронах.

Изобретение относится к области металлургии, а именно к защитному покрытию для защиты конструкционной детали от коррозии и/или окисления. Безрениевый сплав на основе никеля, обладающий стойкостью к коррозии и/или окислению, содержит, в вес.%: кобальт 24-26, хром 12-15, алюминий 10,5-11,5, по меньшей мере один элемент из скандия и/или редкоземельных элементов, в частности иттрий, 0,1-0,7, тантал 0,1-3, необязательно кремний 0,05-0,6, никель - остальное. Защитное покрытие выполнено из заявленного сплава. Конструкционная деталь, в частности, конструкционная деталь (120, 130, 155) газовой турбины (100), содержащая подложку (4) из сплава на основе никеля или на основе кобальта, защитное покрытие и керамический термобарьерный слой (10), причем упомянутый керамический термобарьерный слой (10) нанесен, в частности, на защитное покрытие (7). Защитное покрытие имеет высокую устойчивость к высокотемпературной коррозии и окислению, имеет долговременную стабильность. 3 н. и 9 з.п. ф-лы, 5 ил.
Изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе никеля включает перемешивание порошков для приготовления матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного сплава. Порошки перемешивают с получением смеси, содержащей оксид металла с его объемным содержанием 1-3,5 %, 7,5-8,5 мас. % алюминия, 4-5 мас. % хрома, 2-2,5 мас. % вольфрама, 2,5-3,5 мас. % кобальта, 0,8-1,5 мас. % титана, Ni - остальное. Механическое легирование проводят в высокоэнергетической установке для размола и смешивания в защитной атмосфере в течение 40-60 часов. Компактирование проводят методом горячей экструзии при температуре 1100-1250°C и с коэффициентом вытяжки 11-16. Полученный сплав в виде прутков экструдата прокатывают вдоль направления экструзии при температуре 950-1150°C и коэффициенте деформации 15-20% за один проход. Обеспечивается получение композиционного материала на основе никелевой матрицы, упрочненного оксидом алюминия, с прочностью на растяжение при комнатной температуре не менее 900 МПа и плотностью ≤8,0 г/см3. 3 з.п. ф-лы, 3 пр.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-920°C, а также для ремонта дефектов поверхности изделия, возникающих в результате литья или эксплуатации. Сплав на основе никеля для изготовления и ремонта лопаток газотурбинных установок содержит, мас. %: углерод 0,04-0,06, хром 13,5-14,1, кобальт 14,9-15,5, вольфрам 1,7-2,1, молибден 1,8-2,2, алюминий 2,6-2,8, гафний 0,1-0,2, церий 0,02±0,005, иттрий 0,02±0,005, кремний 0,1±0,03, бор 0,01±0,002, цирконий 0,05±0,01, титан 5,55-6,05, ниобий 0,1-0,2, марганец 0,07-0,13 и никель остальное. Сплав характеризуется повышенными характеристиками длительной прочности, сопротивления окислению и коррозии. Обеспечиваются повышенная структурная стабильность на ресурс, стабильность технологических характеристик сплава и ремонтного покрытия. 4 табл.

Изобретение относится к металлургии. Литая рабочая лопатка с монокристаллической структурой содержит перо, полку замка и замковую часть и состоит из двух фрагментов, соединенных зоной сплавления. Зона сплавления двух фрагментов высотой 5-30 мм размещена между полкой замка и замковой частью лопатки. Один фрагмент - замковая часть - выполнен из сплава с повышенной кратковременной прочностью, а другой фрагмент - перо лопатки и полка замка - из сплава с повышенной жаропрочностью. Разница температур полного растворения упрочняющей γ′- фазы двух жаропрочных сплавов TSOLγ′ составляет не более 20°C, а разница плотностей сплавов ~8%. Жаропрочный сплав на основе никеля для изготовления замковой части рабочей лопатки по изобретению содержит, мас. %: углерод 0,001-0,12; хром 6,5-9,8; кобальт 4,0-7,2; молибден 1,6-3,7; вольфрам 2,0-4,2; титан 3,0-4,5; алюминий 4,8-6,2; ниобий 0,08-0,22; марганец 0,002-0,12; кремний 0,005-0,2; никель остальное. Способ термообработки литой лопатки включает гомогенизирующий отжиг при температуре 1250±10°C в течение 2-3 часов с последующим охлаждением со скоростью 25-40°C/мин до температуры 690-710°C, последующий нагрев лопатки до температуры старения, выдержку в течение 16-24 часов и охлаждение со скоростью 20-40°C/мин до температуры 500°C, выдержку в течение 5-30 мин и охлаждение на воздухе. Обеспечивается повышение прочностных характеристик лопатки и надежности работы турбины. 3 н. и 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к металлургии, в частности к суперсплавам на основе никеля, которые могут быть использованы при сварке. Сплав на основе никеля содержит, вес.%: С 0,13-0,2, Cr 13,5-14,5, Со 9,0-10,0, Мо 1,5-2,4, W 3,4-4,0, Ti 4,6-5,0, Al 2,6-3,0, В 0,005-0,008, при необходимости Nb макс. 0,1, Та макс. 0,1, Zr макс. 0,05, в частности по меньшей мере 0,02, Hf макс. 0,1, Si макс.0,1, Mn макс. 0,1, и примеси, в частности Р, Fe, S, V, Cu, Pb, Bi, Se, Те, Tl, Mg, N, Ag, Ni - остальное. Предотвращается появление горячих трещин при сварке. 3 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к области металлургии, в частности к суперсплавам на основе никеля, которые могут быть использованы в деталях газовой турбины. Суперсплав на основе никеля содержит, вес.%: C ≤0,1; Si ≤0,2; Mn ≤0,2; P ≤0,005; S ≤0,0015; Al 4,0-5,5; B ≤0,03; Co 5,0-9,0; Cr 18,0-22,0; Cu ≤0,1; Fe ≤0,5; Hf 0,9-1,3; Mg ≤0,002; Mo ≤0,5; N ≤0,0015; Nb ≤0,01; O ≤0,0015; Ta 4,8-5,2; Ti 0,8-2,0; W 1,8-2,5; Zr ≤0,01; Ni - остальное. Сплав характеризуется высокими показателями коррозионной стойкости и сопротивления ползучести. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к области металлургии, а именно, к никель-хром-железо-алюминиевому сплаву с высокими характеристиками коррозионной стойкости и высокотемпературной ползучести и может быть использован в качестве материала, используемого в печных конструкциях, а также в химической промышленности. Никель-хром-железо-алюминиевый сплав содержит, мас.%: от 12 до 28% хрома, от 1,8 до 3,0% алюминия, от 1,0 до 15% железа, от 0,01 до 0,5% кремния, от 0,005 до 0,5% марганца, от 0,01 до 0,20% иттрия, от 0,02 до 0,60% титана, от 0,01 до 0,2% циркония, от 0,0002 до 0,05% магния, от 0,0001 до 0,05% кальция, от 0,03 до 0,11% углерода, от 0,003 до 0,05% азота, от 0,0005 до 0,008% бора, от 0,0001 до 0,010% кислорода, от 0,001 до 0,030% фосфора, не более 0,010% серы, не более 0,5% молибдена, не более 0,5% вольфрама, остальное никель и обычные технологические примеси. Сплав характеризуется высокими характеристиками обрабатываемости, высокотемпературной прочности и ползучести, а также коррозионной стойкостью. 7 н. и 17 з.п. ф-лы, 1 ил., 6 табл.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al и изделиям из этих сплавов, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой, например деталям газотурбинных двигателей. Сплав на основе интерметаллида Ni3Al содержит, мас.%: Al 8,3-8,9, Cr 4,5-5,2, W 4,0-4,6, Mo 3,8-4,2, Ti 1,2-1,6, Co 5,4-6,0, Zr 0,05-0,50, C 0,15-0,20, La 0,05-0,25, Y 0,01-0,05, Ni - остальное. Технический результат - повышение кратковременной прочности и длительной прочности сплава при температурах 1050°С и 1100°C. 2 н.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 750-900°С. Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок содержит, мас.%: углерод 0,02-0,13; хром 15,6-16,2; кобальт 8,2-8,8; вольфрам 2,4-2,8; молибден 1,5-2,0; алюминий 3,3-3,7; титан 3,3-3,7; ниобий 0,6-1,1; бор 0,005-0,015; тантал 1,5-2,0; гафний 0,00-0,2; цирконий 0,03-0,08; кальций 0,00-0,02; марганец ≤0,02; медь 0,00-0,05; сера ≤0,005; фосфор ≤0,005; азот 10-20 ppm; кислород 10-15 ppm, по меньшей мере, два элемента, выбранных из группы: кремний ≤0,25; магний 0,00-0,02; железо ≤0,2; никель остальное. Сплав характеризуется высокими характеристиками длительной прочности в сочетании с высоким сопротивлением окислению и коррозионным воздействиям, а также повышенной структурной однородностью. 2 табл.

Изобретение относится к области изготовления ротора турбины газотурбинного двигателя, состоящего из двух и более деталей, изготовленных преимущественно из никелевого жаропрочного сплава с применением электронно-лучевой сварки. Способ включает получение по меньшей мере двух заготовок компонентов ротора из высокопрочного деформируемого никелевого сплава, предварительную термическую обработку заготовок, их соединение посредством электронно-лучевой сварки с формированием сварного шва и окончательную термическую обработку сварной конструкции ротора. Формирование сварного шва производят путем перемещения свариваемых заготовок относительно источника излучения со скоростью 5-30 м/ч, заготовки компонентов ротора получают из жаропрочного деформируемого никелевого сплава, содержащего, мас.%: углерод 0,05-0,07, хром 14-16, кобальт 15-17, молибден 4,5-5, вольфрам 1-1,8, ниобий 4,2-4,7, суммарное содержание алюминия и титана 2,5-3, цирконий 0,5-0,8, бор 0,001-0,003, магний 0,01-0,03, лантан 0,01-0,03 и неизбежные примеси и никель - остальное. Техническим результатом настоящего изобретения является обеспечение работоспособности конструкции ротора при температуре до 750°C, повышение надежности сварных соединений, повышение прочности сварного шва и основного металла заготовок. 3 з.п. ф-лы, 1 табл.
Наверх