Патенты автора Сауров Александр Николаевич (RU)

Использование: для сборки электронных компонентов в электронный модуль. Сущность изобретения заключается в том, что способ изготовления трехмерного электронного модуля включает следующие этапы: создают функциональные блоки, осуществляя монтаж электронных компонентов на технологические подложки с контактными площадками на боковых гранях, проводят тестирование сформированного на подложке функционального блока, при положительном результате которого осуществляют дальнейшие этапы, производят подготовку технологической заливочной оснастки путем ее очистки от посторонних веществ, загрязнений, сушки и нанесения разделительной смазки, которая имеет антиадгезионные свойства, осуществляют позиционирование функциональных блоков в технологической заливочной оснастке, располагая их параллельно один над другим, совмещая контактные площадки, осуществляют приготовление теплопроводящего электроизоляционного компаунда и заливают компаунд в технологическую заливочную оснастку, при приготовлении и заливке теплопроводящего электроизоляционного компаунда применяют операцию двойной дегазаци, осуществляют полимеризацию теплопроводящего электроизоляционного компаунда, обрезают боковые грани сформированного трехмерного электронного модуля для открытия контактных площадок технологических подложек, обрезку осуществляют посредством оборудования, позволяющего обеспечить минимальную шероховатость поверхности боковых торцов трехмерного электронного модуля, проводят процедуру очистки трехмерного электронного модуля от возможных загрязнений, формируют сплошную поверхностную металлизацию методом трафаретной печати, при помощи лазерного пучка локально удаляют участки поверхностной металлизации на боковых гранях, тем самым образуя отдельные дорожки металлизации, коммутирующие необходимые контактные площадки согласно электрической схеме трехмерного электронного модуля. Технический результат: обеспечение возможности повышения надежности изготавливаемых трехмерных электронных модулей. 6 н. и 24 з.п. ф-лы, 7 ил.

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Способ изготовления полевого эмиссионного элемента включает формирование на электропроводящей подложке диэлектрического слоя, формирование маски для травления диэлектрического слоя и электропроводящей подложки, формирование матрицы отверстий в диэлектрическом слое и углублений в подложке, формирование слоя катализатора для выращивания углеродных нанотрубок, удаление маски, формирование маски для травления слоя катализатора, жидкостное химическое травление слоя катализатора с образованием областей катализатора внутри углублений в электропроводящей подложке для последующего выращивания углеродных нанотрубок, удаление маски, плазмохимическое осаждение второго диэлектрического слоя, магнетронное осаждение вытягивающего слоя, формирование маски для травления структуры, состоящей из вытягивающего и второго диэлектрического слоев, над ранее сформированными областями катализатора внутри углублений в подложке для последующего выращивания углеродных нанотрубок, плазмохимическое анизотропное травление с образованием отверстий в вытягивающем и диэлектрическом слоях до формирования сквозного отверстия, удаление маски, изотропное газофазное травление второго диэлектрического слоя до вскрытия катализатора, парофазный синтез углеродных нанотрубок на катализаторе. Технический результат - предотвращение замыкания между УНТ и вытягивающим электродом, уменьшение токов утечки, повышение тока эмиссии, повышение теплоотвода с углеродных нанотрубок, повышение технологичности изготовления, надежности и увеличение выхода годных. 4 ил.

Изобретение относится к электронной технике, в частности к суперконденсаторам. Изобретение может быть использовано в энергетике, при создании высокоэффективных генераторов и накопителей электрической энергии, в автономных мобильных миниатюрных слаботочных источниках питания, применяемых в системах микроэлектроники. Электрод выполнен в виде подложки, на которой сформирована матрица структур, образованных массивами вертикально ориентированных углеродных нанотрубок, покрытых полианилином, содержащим атомы изотопа углерода С-14. Изобретение позволяет улучшить электрические характеристики суперконденсатора и продлить срок его службы. 6 з.п. ф-лы, 1 ил.

Использование: для создания элементов и приборов радиоприемной аппаратуры. Сущность изобретения заключается в том, что радиоприемное устройство, содержащее подложку с нанесенным на нее, по меньшей мере одним, диэлектрическим слоем, в диэлектрическом слое и подложке выполнено углубление, на поверхности диэлектрического слоя с примыканием к углублению на его сторонах выполнены катод, анод, радиоэлектрод и управляющий электрод с отсутствием электрического контакта между ними, на боковой поверхности катода, примыкающей к углублению, сформирован массив из углеродных нанотрубок, область с углублением закрыта герметизирующей пластиной. Технический результат: обеспечение возможности увеличения амплитуды выходного низкочастотного сигнала посредством увеличения автоэмиссионного тока, повышения стабильности работы и срока службы радиоприемного устройства. 9 з.п. ф-лы, 5 ил.

Изобретение относится к электронной технике, в частности к способам изготовления суперконденсаторов. Способ изготовления электрода суперконденсатора заключается в нанесении на проводящую подложку буферного слоя, каталитического слоя, затем диэлектрического слоя, вскрытии в диэлектрическом слое матрицы окон до каталитического слоя с поперечным размером 40-60 мкм, осаждении в окнах массивов вертикально ориентированных углеродных нанотрубок, функционализации поверхности углеродных нанотрубок кислородсодержащими группами, формировании слоя полианилина, содержащего изотоп С-14, на вертикально ориентированных углеродных нанотрубках электрохимическим осаждением, отжиге. Изобретение обеспечивает функцию самозарядки в суперконденсаторе. 12 з.п. ф-лы, 2 ил.

Изобретение относится к способу изготовления радиоприемного устройства с применением углеродных нанотрубок. Технический результат заключается в повышении стабильности работы и срока службы радиоприемного устройства с применением углеродных нанотрубок. Способ изготовления радиоприемного устройства с углеродными нанотрубками включает формирование диэлектрического слоя 2 на поверхности подложки 1, формирование электрически развязанных между собой катода 3, анода 4, радиоэлектрода и управляющего электрода с контактными площадками и с расположением их торцов по сторонам прямоугольника, формирование области каталитического слоя 7 на поверхности катода 3, примыкающей к его торцу, покрытие защитным слоем 8 каталитического слоя 7, за исключением боковой грани, примыкающей к торцу катода 3, формирование углубления в диэлектрическом слое и подложке с примыканием торцов электродов к нему проекционной фотолитографией и реактивным ионным плазменным травлением, выращивание массива углеродных нанотрубок 9 путем плазмо-химического осаждения из газовой фазы на боковой грани каталитического слоя 7, нанесенного на катод 3, обращенной к углублению, сращивание полученной структуры и герметизирующей пластины с помощью стеклянного припоя. 10 з.п. ф-лы, 11 ил.

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Полевой эмиссионный элемент содержит электропроводящую подложку 1, расположенный на ней диэлектрический слой 3, над которым расположен вытягивающий слой 5, в структуре, состоящей из вытягивающего 5 и диэлектрического 3 слоев, выполнена матрица сквозных отверстий 7, на стенках которых расположен изолирующий слой 6, а на дне отверстий расположен слой катализатора 4, на котором сформирован массив углеродных нанотрубок 2. Способ изготовления полевого эмиссионного элемента включает формирование на электропроводящей подложке слоя катализатора для выращивания углеродных нанотрубок, формирование маски для травления слоя катализатора, жидкостное химическое травление слоя катализатора с образованием областей катализатора для последующего выращивания углеродных нанотрубок, удаление маски, плазмохимическое осаждение диэлектрического слоя, магнетронное осаждение вытягивающего слоя, формирование маски для травления структуры, состоящей из вытягивающего и диэлектрического слоев, над ранее сформированными областями катализатора для последующего выращивания углеродных нанотрубок, плазмохимическое анизотропное травление с образованием отверстий в вытягивающем и диэлектрическом слоях до слоя катализатора, удаление маски, изотропное осаждение изоляционного слоя, анизотропное плазмохимическое травление изоляционного слоя на вытягивающем слое и в на дне отверстий до слоя катализатора с формированием изоляционного слоя на боковых поверхностях отверстий, парофазный синтез углеродных нанотрубок на катализаторе. Технический результат - предотвращение замыканий, уменьшение токов утечки, повышение тока эмиссии, надежности и увеличение выхода годных. 2 н. и 10 з.п. ф-лы, 12 ил.

Изобретение относится к способам изготовления автоэмиссионных катодов с применением углеродных нанотрубок и может быть использовано для изготовления элементов и приборов вакуумной микро- и наноэлектроники. Способ включает осаждение на подложку электропроводящего буферного слоя, осаждение каталитического слоя, формирование вертикально ориентированного массива углеродных нанотрубок путем плазмохимического осаждения из газовой фазы с отношением длины углеродных нанотрубок к их диаметру в интервале от 25 до 75, термическую обработку массива углеродных нанотрубок в вакууме и обработку массива углеродных нанотрубок плазмой на основе водорода. Техническим результатом является увеличение максимальной плотности тока автоэмиссионных катодов на основе вертикально ориентированных массивов УНТ в совокупности с повышением стабильности тока эмиссии и срока службы катода. 15 з.п. ф-лы, 5 ил.

Использование: для использования в конструкциях датчиков и преобразователей магнитного поля, электрического тока, контроля перемещения и угла поворота объекта. Сущность изобретения заключается в том, что магниторезистивный элемент содержит участки магниторезистивной пленки в форме параллелограмма с острым углом 45°, имеющей ось легкой намагниченности, параллельную короткой стороне параллелограмма, соединенные между собой немагнитными металлическими перемычками, контактные окна к участкам магниторезистивной пленки выполнены на длинных сторонах параллелограмма. Технический результат: обеспечение возможности улучшения магниточувствительности датчика. 1 з.п. ф-лы, 1 ил.

Изобретение относится к датчикам оптического излучения. Чувствительный элемент оптического датчика содержит подложку 1, массив углеродных нанотрубок 2, электропроводящий слой 3, диэлектрический слой 4, а также верхний оптически прозрачный слой 5. В подложке 1 выполнено углубление 6, в котором на слое алюминия или оксида алюминия 7 сформирован массив углеродных нанотрубок 2. На поверхности подложки 1 за исключением места углубления 6 сформирован диэлектрический слой 4, над которым сформирован электропроводящий слой 3. Электропроводящий слой 3 образует электрический контакт с боковой поверхностью массива углеродных нанотрубок 2. Массив углеродных нанотрубок 2 имеет электрический контакт с подложкой 1 через слой алюминия или оксида алюминия 7. Верхний оптически прозрачный слой 5, обеспечивающий герметизацию массива углеродных нанотрубок, может быть выполнен как по всей поверхности, так и только в области массива углеродных нанотрубок 2. Технический результат заключается в повышении надежности функционирования чувствительного элемента оптического датчика без уменьшения чувствительности оптического датчика за счет исключения влияния внешних факторов окружающей среды на функционирование датчика. 7 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, представляет собой магниторезистивный преобразователь и может быть использовано в конструкции датчиков магнитного поля. Преобразователь содержит кремниевый кристалл с выполненными в нем по меньшей мере двумя заглублениями, в которых размещены планарные металлические концентраторы. Планарные металлические концентраторы выполнены длиной L и толщиной b, причем величина зазора между концентраторами h составляет примерно не более чем 2 толщины концентратора b и не менее чем 0,06 длины концентратора L. На поверхности кристалла в области между заглублениями размещен магниточувствительный элемент. Над магниточувствительным элементом размещена планарная катушка первого типа, выполненная с возможностью формирования магнитного поля вдоль оси легкого намагничивания магниторезистивных полосок, отделенная от магниточувствительного элемента первым слоем диэлектрика, над которой размещена планарная катушка второго типа, выполненная с возможностью формирования магнитного поля, перпендикулярного оси легкого намагничивания магниторезистивных полосок, отделенная от планарной катушки первого типа вторым слоем диэлектрика. Техническим результатом является увеличение относительной чувствительности к слабому магнитному полю (до 1 мТл) и повышение соотношения сигнал/шум. 7 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и представляет собой датчик переменного магнитного поля. Датчик содержит по меньшей мере один магниточувствительный датчик, управляющий проводник которого подключен своими концами к внешнему проводнику с образованием замкнутого контура. Замкнутый контур, образованный управляющим проводником и подключенным к нему внешним проводником, заземлен на половине длины внешнего проводника. В магниточувствительном датчике магниточувствительный элемент и управляющий проводник разделены изолирующим слоем. Магниточувствительный датчик размещен внутри оболочки из магнитомягкого материала с изоляцией от нее диэлектрическим слоем. Внутри замкнутого контура может быть размещен ферромагнитный концентратор с намотанной на него многовитковой катушкой, своими концами соединенной с перестраиваемым конденсатором. Технический результат заключается в обеспечении стабильности измерения магнитного поля при перемещении самого датчика в низкочастотных и постоянных магнитных полях Земли, окружающих намагниченных предметов и электромагнитных приборов, повышении помехозащищенности датчика, в том числе от электрических импульсных помех. 6 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, представляет собой магниторезистивный преобразователь магнитного поля и может быть использовано в приборах контроля и измерения вектора магнитного поля. Преобразователь содержит тонкопленочные магниторезистивные элементы с гигантским магниторезистивным эффектом и с однонаправленным изменением сопротивления под действием магнитного поля, соединенные по мостовой схеме. В каждом плече мостовой схемы параллельно соединено либо по меньшей мере два магниторезистивных элемента, либо по меньшей мере два ряда последовательно соединенных магниторезистивных элементов. Техническим результатом является повышение отношения сигнал/шум в широком частотном диапазоне. 2 н.п. ф-лы, 2 ил.
Заявляемое изобретение относится к области электрической техники, в частности к способам создания электропроводящих слоев, применяемых в широких областях техники, в том числе в электронике или электротехнике, и может быть использовано для создания проводящих соединений в микросхемах. Способ формирования электропроводящих слоев на основе углеродных нанотрубок включает нанесение на подложку суспензии, содержащей углеродные нанотрубки и раствор карбоксиметилцеллюлозы в воде при следующем соотношении компонентов, мас.%: карбоксиметилцеллюлоза 1-10 и углеродные нанотрубки 1-10, сушку при температуре от 20 до 150°С, пиролиз при температуре выше 250°С. Технический результат заключается в повышении электропроводности формируемых слоев. 3 з.п. ф-лы, 1 табл.

Изобретение относится к способам изготовления датчиков давления и может быть использовано в микро- и наноэлектронике для изготовлении систем для измерения давления окружающей среды. Способ изготовления датчика давления включает нанесение первого диэлектрического слоя на поверхность подложки, формирование электрической разводки, нанесение второго диэлектрического слоя, формирование области роста массива углеродных нанотрубок в виде углубления в подложке с использованием литографии, формирование буферного слоя, формирование над буферным слоем функционального слоя, содержащего катализатор роста углеродных нанотрубок, удаление маски резиста, нанесенной в процессе литографии, проведение синтеза углеродных нанотрубок с плазменной стимуляцией процесса роста углеродных нанотрубок. В последующем может быть сформирован верхний герметизирующий слой, по меньшей мере, над массивом углеродных нанотрубок. Техническим результатом является повышение надежности функционирования чувствительного элемента датчика давления, повышение чувствительности датчика давления, достижение стабильности функционирования датчика вне зависимости от изменений параметров рабочей среды. 17 з.п. ф-лы, 4 ил.

Изобретение относится к средствам контроля медицинской техники и может быть использовано в устройствах обнаружения магнитных микрогранул, прикрепившихся к биоматериалам в результате процессов биотинилирования и гибридизации

Изобретение относится к технологии микро- и наноэлектроники и может быть использовано в производстве гибридных микросистем анализа слабого магнитного поля

Изобретение относится к полупроводниковой электронике

Изобретение относится к области микроэлектроники, а именно к осаждению разных диэлектрических слоев производных кремния в производстве субмикронных СБИС (сверхбольших интегральных схем)

Изобретение относится к технологии формирования наноэлектронных структур

Изобретение относится к полупроводниковым приборам для преобразования воздействий радиационного излучения, преимущественно нейтронного, в электрический сигнал, измерение которого позволяет определить уровень радиации или набранную дозу облучения

Изобретение относится к микроэлектронике

Изобретение относится к микроэлектронике и может быть использовано в технологии изготовления биполярных транзисторов

Изобретение относится к области анализа материалов с использованием облучения их различными видами излучений, в частности рентгеновским, нейтронным и электромагнитным излучением, вызывающим ядерный квадрупольный резонанс, и преимущественно может быть использовано для обнаружения взрывчатых веществ в контролируемых предметах без вскрытия последних

Изобретение относится к микроэлектронике, а именно к технологии осаждения полупроводниковых, диэлектрических и металлических слоев при пониженном давлении

Изобретение относится к области магнитных датчиков и может быть использовано при изготовлении магниторезистивных датчиков магнитного поля с перпендикулярными направлениями измерения магнитного поля на одной подложке для таких приборов, как электронный компас, магнетометр и др
Изобретение относится к микроэлектронике и может найти применение при создании радиационно стойких элементов КМОП-схем на КНИ подложке

Изобретение относится к области магнитных датчиков и может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока

Изобретение относится к технологии производства интегральных схем на подложках типа - кремний на изоляторе (КНИ) и может быть использовано для создания транзисторых структур с предельно минимальными размерами для УБИС

Изобретение относится к области автоматики и может быть использовано в тахометрах, устройствах неразрушающего контроля, датчиках перемещения, датчиках для измерения постоянного и переменного магнитного поля, электрического тока

Изобретение относится к измерительной технике

 


Наверх