Патенты автора Ищук Игорь Николаевич (RU)

Изобретение относится к области автономной навигации беспилотных летательных аппаратов по оптическим изображениям земной поверхности. Способ автономной навигации беспилотных летательных аппаратов заключается в том, что эталонные и рабочие изображения получают с помощью оптико-электронных систем в инфракрасном диапазоне. Эталонные изображения подготавливают на основе тепловой модели местности путем решения прямой задачи радиационного теплопереноса с учетом плотности потока падающего солнечного излучения, температуры воздуха и высоты полета для заданных участков местности траектории полета и соответствующих периодов астрономического времени. Рабочие изображения регистрируют в процессе съемки в надир с помощью оптико-электронных систем в инфракрасном диапазоне. Полученные эталонные и рабочие инфракрасные изображения подвергают пороговой обработке, в результате которой формируют эталонные и рабочие матрицы опорных точек (контуров) объектов. Осуществляют расчет и находят максимум двумерной матрицы взаимокорреляционной функции, и оценивают географическое положение максимума взаимокорреляционной функции по эталонной матрице опорных точек (контуров). Используют данную оценку положения максимума взаимокорреляционной функции для автономной навигации беспилотных летательных аппаратов по данным измеренных значений курса, крена, тангажа и высоты беспилотного летательного аппарата. Технический результат - повышение точности определения навигационных параметров беспилотного летательного аппарата в условиях некорректной работы приемника глобальных систем спутниковой навигации. 3 ил.

Изобретение относится к технике активного неразрушающего теплового контроля и может быть использовано в аппаратуре дистанционного зондирования земли. Согласно заявленному способу осуществляют съемку исследуемого района в светлое время суток в видимом и инфракрасном диапазонах и в темное время суток в инфракрасном диапазоне. Для изображений видимого диапазона создают банк данных типовых объектов и фонов дистанционного мониторинга, содержащий таблицу значений коэффициентов излучательной способности для каждого объекта классификатора, измеренных заранее и записанных в таблицу классификатора. Для изображений инфракрасного диапазона создают банк данных эталонных конструкционных и функциональных материалов объектов, антропогенных и природных ландшафтов, содержащий таблицу значений теплопроводности, температуропроводности, удельной теплоемкости, плотности и тепловой инерции для каждого объекта классификатора, ранее измеренных и записанных в таблицу. По изображениям видимого диапазона, полученным в светлое время суток, классифицируют объекты и фоны на основе алгоритмов сверточных нейронных сетей, определяют их класс и присваивают значения коэффициента излучательной способности в каждой точке изображения из соответствующего банка данных. Изображения инфракрасного диапазона, полученные в светлое и темное время суток, пересчитывают в пространственное распределение термодинамических температур, которые классифицируют на основе алгоритмов сверточных нейронных по теплофизическим свойствам конструкционных и функциональных материалов объектов, антропогенных и природных ландшафтов в каждой точке изображения с присвоением табличных значений теплопроводности, температуропроводности, удельной теплоемкости, плотности и тепловой инерции из соответствующего банка данных. Повышение достоверности классификации материалов таблицы обеспечивается возможностью дополнения в обучающую выборку термодинамических температур, пересчитанных из инфракрасных изображений, а также смоделированных инфракрасных сигнатур объектов, на основе методов глубокого обучения нейронных сетей с учителем. Технический результат - повышение достоверности определения теплофизических параметров объектов дистанционного мониторинга, а также упрощение способа дистанционного определения пространственного распределения теплофизических параметров земной поверхности за счет исключения блоков регистрации и выдачи метеорологических условий и регистрации количества суммарной солнечной радиации. 3 ил.

Изобретение относится к технике активного неразрушающего теплового контроля и может быть использовано в аппаратуре дистанционного зондирования земли. Согласно заявленному способу осуществляют съемку земной поверхности в ИК диапазоне, измеряют значения радиационной температуры исследуемой поверхности, определяют пространственное распределение значений теплопроводности, температуропроводности, тепловой инерции и коэффициента теплоусвоения. Дополнительно осуществляют съемку земной поверхности в видимом диапазоне, усредняют полученные изображения видимого и ИК диапазонов, определяют коэффициент излучающей способности земной поверхности. Пересчитывают измеренные значения радиационных температур в термодинамические, выделяют фон на видимом и ИК изображениях, определяют структуру земной поверхности. С учетом полученных результатов уточняют граничные условия при расчете пространственного распределения значений теплопроводности, температуропроводности, тепловой инерции и коэффициента теплоусвоения земной поверхности. Технический результат - повышение точности оценки значений теплофизических параметров за счет определения структуры земной поверхности и уточнения в соответствии с этим граничных условий сопряжения слоистых сред, а также определения коэффициента излучающей способности земной поверхности с расположенными на ней техногенными объектами при проведении дистанционного мониторинга. 2 ил., 1 табл.

Изобретение относится к дистанционным методам активного теплового неразрушающего контроля и может быть использовано для определения пространственного распределения теплофизических параметров поверхности земли. Сущность: измеряют радиационную температуру исследуемой поверхности земли (2) с помощью аппаратуры, установленной на беспилотном летательном аппарате (1) вертолетного типа. Рассчитывают теплопроводность и температуропроводность поверхности земли (2). Строят пространственное распределение полученных параметров. При этом на исследуемой поверхности земли (2) устанавливают эталонные материалы (3) с известными значениями теплофизических параметров. Подвергают эти материалы (3) воздействию солнечного излучения от восхода Солнца до его заката. Одновременно с заданной периодичностью регистрируют суммарную и отраженную солнечную радиацию, поступающую на исследуемую поверхность земли (2), и измеряют радиационный баланс исследуемой поверхности земли (2). Затем от захода Солнца до его восхода измеряют температуру окружающей среды и почвы, скорость ветра, радиационную температуру на поверхности эталонного материала (3) и исследуемой поверхности земли (2). С использованием полученных результатов измерений определяют усредненную энергетическую светимость эталонных материалов (3). Уточняют теплопроводность и температуропроводность исследуемой поверхности земли (2). Технический результат: повышение точности определения пространственного распределения теплофизических параметров поверхности земли. 1 ил.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта. Измерение тепловизионным приемником радиационной температуры производят во всех точках пространственной сетки зондируемой поверхности исследуемого изотропного объекта. Располагают тепловизионный приемник на заданном расстоянии d от оси геометрического центра исследуемого объекта и совершают тепловизионным приемником круговое движение с постоянной скоростью относительно геометрического центра объекта, либо тепловизионный приемник, размещают неподвижно на заданном расстоянии d от оси геометрического центра исследуемого объекта, осуществляя вращения с постоянной скоростью исследуемого изотропного объекта и фона относительно оси поворотной конструкции, на которой они расположены. Формируют набор термограмм круговых разверток радиационных инфракрасных изображений объекта и фона, полученных в разные моменты времени. Применяют разностную модель с использованием неявных схем. Определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта. Технический результат - повышение точности получаемых данных. 5 ил.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ определения комплекса теплофизических параметров изотропных материалов включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного материала. Измерение тепловизионным приемником радиационной температуры производят во всех точках пространственной сетки поверхности исследуемого изотропного материала. Осуществляют непрерывный равномерный нагрев поверхности эталонного/исследуемого изотропного материала от перемещаемого инфракрасного источника нагрева. При этом с началом перемещения радиационную температуру измеряют на поверхности эталонного изотропного материала с известными теплофизическими параметрами в одной точке пространственной сетки поверхности эталонного изотропного материала, попадаемой в объектив тепловизионного приемника. После чего радиационную температуру измеряют на поверхности исследуемого изотропного материала во всех точках пространственной сетки поверхности исследуемого изотропного материала в процессе остывания. Применяют разностную модель с использованием неявных схем. Решают оптимизационную параметрическую задачу для исследуемого изотропного материала в каждой точке пространственного разрешения в соответствии с растром изображения. Определяют из минимума невязки искомые оцененные значения теплофизических параметров исследуемого изотропного материала. Технический результат - повышение точности получаемых данных. 7 ил.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала. Измерение тепловизионным приемником радиационной температуры производят во всех точках пространственной сетки поверхности исследуемого изотропного материала. Перемещают инфракрасный источник нагрева и тепловизионный приемник вдоль поверхности изотропного исследуемого и эталонного материала с постоянной скоростью по криволинейной траектории. При этом с началом перемещения радиационную температуру измеряют в центре поверхности каждого эталонного материала с известными теплофизическими. После чего радиационные температуры измеряют на поверхности исследуемого изотропного материала во всех точках пространственной сетки поверхности исследуемого изотропного материала. Применяют разностную модель с использованием неявных схем. Решают оптимизационную параметрическую задачу для исследуемого изотропного материала в каждой точке пространственного разрешения в соответствии с растром изображения. Определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта. Технический результат - повышение точности получаемых данных. 6 ил.

Изобретение относится к области термометрии и может быть использовано для работы с термопреобразователями с импульсным выходным сигналом. Цифровой термометр содержит термопреобразователь с импульсным выходом, генератор прямоугольных импульсов, реверсивный счетчик с прямыми динамическими входами, параллельный регистр с инверсным динамическим синхровходом, элемент И, элемент НЕ, преобразователь код-частота (ГТКЧ) и дополнительно введенное ПЗУ. При этом вычитающий вход реверсивного счетчика соединен с выходом элемента И, первый вход которого подключен к выходу ПКЧ, частотный вход, которого соединен с выходом генератора прямоугольных импульсов, а второй вход элемента И связан с выходом элемента НЕ, соединенного с выходом термопреобразователя. Суммирующий вход реверсивного счетчика с весовым коэффициентом k подключен к выходу термопреобразователя и синхровходу параллельного регистра, выходы реверсивного счетчика подключены к входам параллельного регистра, выходы которого соединены с кодовыми входами ПКЧ и с входами ПЗУ, выходы которого являются выходами устройства. Технический результат: повышение точности измерения температуры и расширение функциональных возможностей устройства. 1 ил.

Изобретение относится к термометрии и предназначено для работы с термопреобразователями с частотным выходным сигналом. Заявлен цифровой термометр, содержащий термопреобразователь с частотным выходом, генератор прямоугольных импульсов, реверсивный счетчик с прямыми динамическими входами, параллельный регистр с инверсным динамическим синхровходом, преобразователь код-частота (ПКЧ) и дополнительно введенное ПЗУ. Вычитающий вход реверсивного счетчика соединен с выходом ПКЧ, частотный вход которого соединен с выходом генератора прямоугольных импульсов, а суммирующий вход счетчика подключен к выходу термопреобразователя и синхровходу параллельного регистра. Выходы реверсивного счетчика подключены к входам параллельного регистра, выходы которого соединены с кодовыми входами ПКЧ и с входами ПЗУ, выходы которого являются выходами устройства. Предлагаемое изобретение обеспечивает функциональное преобразование импульсной информации за счет использования частотно-импульсной следящей системы компенсационного типа, обеспечивающей непрерывное отказоустойчивое формирование результата в соответствии с температурной характеристикой термопреобразователя. Технический результат: повышение точности измерения температуры. 1 ил.

Изобретение относиться к термометрии и может быть использовано при измерении быстроменяющихся температур с централизованной обработкой информации на микропроцессорной технике. В предлагаемом способе измерения температуры путем подачи импульса положительной полярности на вход электрической цепи, содержащей терморезистор, и регистрации интервала времени, когда на вход электрической цепи подают прямоугольный импульс напряжения, прерывают действие импульса при изменении выходного сигнала электрической цепи в течение фиксированного интервала времени от фиксированного уровня выходного сигнала. Возобновляют подачу входного импульса в течение фиксированного интервала времени при достижении значения выходного сигнала фиксированного уровня и регистрируют интервал времени между моментами снятия и подачи входного импульса положительной полярности, а также регистрируют интервал времени между моментами подачи входных импульсов положительной полярности. При этом на вход электрической цепи подают импульс отрицательной полярности после прерывания действия импульса положительной полярности. Технический результат - повышение быстродействия получения информационных отсчетов для определения измеряемой температуры. 2 ил.

Изобретение относится к обнаружению подповерхностных объектов методами оптической локации в инфракрасном диапазоне

Изобретение относится к импульсным методам определения теплофизических свойств материалов

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике и направлено на повышение точности измерений

Изобретение относится к измерительной технике и может быть использовано в системах температурного контроля газотурбинных двигателей летательных аппаратов, электрооборудования электростанций и т.д

Изобретение относится к теплофизическим измерениям

Изобретение относится к области контактной термометрии и направлено на повышение точности измерения скорости изменения температуры

 


Наверх