Патенты автора Бланк Владимир Давыдович (RU)

Изобретение относится к области изготовления бета-вольтаических батарей. Способ включает изготовление преобразователей энергии путём формирования на одной из сторон алмазной подложки жертвенного и остаточного слоев, синтеза поверх остаточного слоя эпитаксиального слоя алмаза, удаления жертвенного слоя и отделения эпитаксиального слоя алмаза с остаточным слоем от основной части подложки. Для полученных преобразователей измеряют напряжение холостого хода и ток короткого замыкания. Формируют группы преобразователей таким образом, что внутри каждой группы напряжение холостого хода отличается не более чем на 20%. Оставляют в каждой группе такое количество преобразователей, чтобы при их параллельном электрическом подключении внутри группы, все группы выдавали ток короткого замыкания с разницей не более 20%. Каждую полученную группу преобразователей прикрепляют к проводящей подложке, изолированной от подложек других групп, и электрически параллельно соединяют преобразователи внутри группы. Затем устанавливают группы преобразователей на подложках внутри корпуса батареи, электрически соединяют эти группы между выводами корпуса последовательно друг с другом и устанавливают поверх преобразователей источник бета-излучения в виде пластины. Техническим результатом является повышение эффективности получения электрической энергии при снижении количества отбракованных преобразователей за счет использования преобразователей с различными значениями напряжений холостого хода и токов короткого замыкания. 2 н. и 11 з.п. ф-лы, 9 ил., 1 табл., 1 пр.

Изобретение относится к области порошковой металлургии, в частности к способу получения композиционного материала бор-углерод. Способ включает механическую обработку в планетарной мельнице смеси порошков аморфного бора с размерами частиц менее 2 мкм и фуллерита С60 с размерами частиц менее 200 мкм, которые берут в соотношении от 1:5 до 5:1, с добавлением метилового или этилового спирта в количестве 1 мл на 1 г смеси в режиме 900-1200 оборотов в минуту в течение 10-30 мин с получением гомогенного состояния, извлечение смеси из мельницы, сушку смеси на воздухе при температуре 100°С в течение 2 ч и воздействие на смесь давлением в пределах 1,5-2,5 ГПа и температурой в пределах от 900 до 1100°С в течение 60-120 мин. Изобретение обеспечивает получение композиционного материала бор-углерод с повышенной более 50% эластичностью при сохранении достаточно высокой твердости около 10 ГПа по шкале Виккерса и плотности не менее 95%. 2 ил., 5 пр.

Изобретение относится к области исследования природных и синтетических алмазов и может быть использовано для выявления и отделения природных алмазов от алмазных симуляций, для отделения природных алмазов от синтетических и для выявления спорных алмазов типа IIа, которые, возможно, были подвергнуты термобарической обработке с целью улучшения цвета. Заявленное устройство для идентификации алмаза содержит два источника излучения: дейтериевой лампы и лазера с длиной волны 405 нм. Излучение этих источников, прошедших через неограненный или ограненный алмаз, регистрируют спектрометром. Устройство также снабжено механизмом ввода-вывода нотч- фильтра между коллимирующими линзами приемного оптоволокна, направляющего излучения, прошедшие через образец алмаза и вышедшие из него, в спектрометр, который соединен с микропроцессорным контроллером, производящим анализ и интерпретацию полученных данных. Технический результат - разработка компактного мобильного устройства, обеспечивающего эффективную идентификацию ограненных и неограненных алмазов. 2 ил.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении композитов, электрохимических и электрофизических устройств. В электролите, содержащем источник углерода, размещают электроды. В качестве анода используют электропроводные материалы, такие как железо, алюминий, титан, молибден, медь, нержавеющая сталь. Также в качестве анода можно использовать неэлектропроводный материал, снабженный покрытием из электропроводного материала, такого как железо, алюминий, титан, молибден, медь, нержавеющая сталь. В качестве электролита используют водные растворы солей, содержащих анионы НСО3, Н3С2О2, СО3, по отдельности либо в виде смеси. В качестве солей, содержащих анионы НСО3 и/или СО3, можно использовать водорастворимые соли натрия и/или калия или их смесь, а в качестве солей, содержащих анионы Н3С2О2 - водорастворимые соли K, Na, Ва, Cu, Mg, Cr, Fe++, Fe+++, Ni, Mn, Zn, Ag, Sn, Co либо их смеси. Через электролит пропускают постоянный или импульсный электрический ток. Получают графен, графеновые пленки и покрытия на подложке в промышленном масштабе без использования высоких температур, защитных атмосфер и дорогостоящих солей. 5 з.п. ф-лы, 7 ил.

Изобретение относится к способу изготовления сверхтонких полупроводниковых структур с потенциальным барьером, способных генерировать полезную электрическую энергию под действием ионизирующего излучения. Из алмаза типа IIb изготавливают подложку толщиной от 100 до 1000 мкм, на одной из сторон алмазной подложки формируют жертвенный слой и остаточный слой посредством имплантации ионов с энергией не менее 100 кэВ с последующим отжигом подложки в вакууме или атмосфере инертного газа при температуре от 700 до 2000°С. Затем на остаточном слое проводят синтез эпитаксиального слоя алмаза типа IIb толщиной от 5 до 50 мкм, удаляют синтезированный слой алмаза с торцов подложки, обрабатывают жертвенный слой методом электрохимического травления в сильном окислителе до полного удаления жертвенного слоя, отделяют эпитаксиальный слой алмаза с остаточным слоем от основной части подложки, формируют положительный контакт преобразователя на остаточном слое. Далее эпитаксиальный слой алмаза подвергают воздействию ионизирующего излучения в атмосфере кислорода или нагрева в атмосфере кислорода или воздействию кислородной плазмы и формируют отрицательный контакт преобразователя на эпитаксиальном слое алмаза. Техническим результатом является обеспечение максимальной удельной мощности и минимизации толщины преобразователя, выполненного из алмаза, возможность создания автономных радиоизотопных источников электрического питания с большим соотношением мощности к массе и габаритам, а также возможность изготовления 10-500 преобразователей с многократным использованием одной алмазной подложки. 2 з.п. ф-лы, 6 ил., 3 пр.

Изобретение относится к получению монокристаллов алмазов, в частности, легированных азотом и фосфором, при высоких давлениях и температурах, которые могут быть использованы в устройствах электроники. Способ выращивания легированных азотом и фосфором монокристаллов алмаза в области высоких давлений 5,5-6,0 ГПа и температур 1600-1750°С осуществляют на затравочном кристалле, который предварительно запрессовывают в подложке из хлорида цезия и отделяют от источника углерода, азота и фосфора металлом-растворителем, в качестве которого используют сплав железа, алюминия и углерода. Между источником углерода, азота и фосфора и затравочным кристаллом создают разность температур 20-50°С. Сплав железа, алюминия и углерода в металле-растворителе берут при следующем соотношении компонентов, вес.%: железо 92,5-95,0; алюминий 2,5-0,5; углерод 5,0-4,0. Смесь источника углерода, азота и фосфора берут при следующем соотношении компонентов, вес.%: углерод (графит) 95,0-97,0; фосфор 5,0-3,0; адсорбированный азот 0,001±0,0005. Нагрев осуществляют до начальной температуры в зоне роста на 100-250°С выше температуры плавления сплава металла-растворителя, производят выдержку при этой температуре от 50 до 150 ч. Массовая скорость роста кристаллов составляет более 2 мг/ч. Технический результат заключается в контролируемом легировании выращиваемого на затравке монокристалла алмаза примесями фосфора и азота в условиях воздействия высоких давления и температуры. Полученные крупные монокристаллы алмаза (весом более 0,6 карат) содержат примесь азота в концентрации 0,1-17,8 частей на миллион атомов углерода и фосфор в концентрации 0,5-5 частей на миллион атомов углерода. 2 ил., 3 пр.

Изобретение относится к способу синтеза керамического материала на основе корунда, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенной твердости. Техническим результатом изобретения является разработка керамического материала на основе корунда с высокой твердостью, превышающей твердость монокристаллического корунда. Высокая твердость достигается за счет модификации границ зерен корунда углеродом, при этом весь углерод распределен по границам зерен. Способ синтеза включает в себя покрытие зерен корунда единичными слоями фуллерена путем обработки корунда и фуллерена в планетарной мельнице. Полученный модифицированный нанопорошок корунда со средним размером частиц 30 нм либо компактируют методом одноосного двустороннего прессования и спекают при температуре 1600-1800°С, либо осуществляют его горячее прессование при давлении 0,5-2 ГПа при температуре 1600-1800°С. 2 н.п. ф-лы, 5 ил., 6 пр.

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей с р- и n-типами проводимости в области р-n перехода, нанесение на поверхность полупроводникового материала в разных его областях слоев различных металлов, присоединение к ним проводников и воздействие на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза ионизирующим излучением с одновременным снятием электричества с помощью проводников, при этом в качестве ионизирующего излучения используют высокоэнергетические источники альфа-излучения мощностью не менее 0,567 Вт/г, а в качестве полупроводникового материала изготавливают синтетический алмаз р-типа с содержанием бора 1014-1016 атомов на см3 и на его поверхностях в разных областях с р- и n-типами проводимости в вакууме наносят неразрывные металлические контакты, один из которых трехслойная система металлизации вида титан-платина-золото для съема положительного заряда и другой с потенциальным барьером Шоттки - из платины, золота или иридия для снятия отрицательного заряда, на который воздействуют ионизирующим излучением, в результате чего внутри алмаза создают область пространственных зарядов, последние в электрическом поле разлетаются на отрицательные заряды, собираемые на металле контакта Шоттки, и положительные, собираемые на контакте из титана-платины-золота, и с них снимают электричество. Техническим результатом изобретения является создание способа преобразования ионизирующего излучения в электрическую энергию, обладающего более простой схемой изготовления полупроводниковой структуры, более высокой радиационной стойкостью, а также более высоким сроком службы полупроводникового материала. 2 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Источник альфа-излучения испускает альфа-частицы, которые в диссоциирующем газе превращаются в ультрафиолетовое излучение. На пути ультрафиолетового излучения располагается синтетический полупроводниковый алмаз р-типа с контактом Шоттки и омическим контактом так, чтобы ультрафиолетовое излучение полностью или частично попадало на полупроводниковый базовый элемент-преобразователь на основе синтетического алмаза. При этом электрический ток снимается с контактов при помощи проводников и передается потребителю. Техническим результатом изобретения является исключение сложной, многостадийной схемы изготовления полупроводниковой структуры с возможностью использования только низкоэнергетических бета-источников, повышение электрофизических характеристик (радиационная стойкость, напряжение пробоя, подвижность электронов и дырок, теплопроводность) при преобразовании энергии ионизирующего излучения различных видов (альфа-излучение, бета-излучение, ультрафиолетовое излучение) в широком диапазоне энергий в электрическую энергию. 4 з. п. ф-лы, 1 табл., 1 ил.

Изобретении может быть использовано в ракетно-космической и авиационной отраслях, при металлообработке, обработке природных и искусственных камней, твердых и сверхтвердых материалов. Способ получения композитного материала включает воздействие на смесь углеродсодержащего материала, наполнителя и серосодержащего соединения давлением 0,1-20 ГПа и температурой 600-2000оС. В качестве серосодержащего соединения используют сероуглерод, соединение из группы меркаптанов или продукт его взаимодействия с элементарной серой. В качестве углеродсодержащего материала используют молекулярный фуллерен С60 или фуллеренсодержащую сажу. В качестве наполнителя используют углеродные волокна, или алмаз, или нитриды, или карбиды, или бориды, или оксиды в количестве от 1 до 99 массовых % от веса углеродсодержащего материала. Полученный композитный материал может быть использован для изготовления изделий с характерным размером 1-100 см и характеризуется высокой прочностью, низкой плотностью, твердостью не менее 10 ГПа и высокой жаростойкостью на воздухе. 2 н. и 9 з.п. ф-лы, 3 ил., 11 пр.

Изобретение может быть использовано для изготовления элементов аппаратов высокого давления, материалов с высокой износостойкостью, режущих инструментов, инструментов для бурения. Готовят исходную смесь, содержащую, масс. %: фуллерит C60 и/или C70 - 30-70; бор с размерами частиц до 2 мкм - 70-30. На первом этапе полученную смесь обрабатывают в газостате в инертном газе при давлении 50-120 МПа, температуре 1500-1850°C с последующей выдержкой 15-180 минут. Затем температуру снижают до комнатной, а давление - до атмосферного. На втором этапе воздействуют давлением не ниже 7 ГПа и температурой не ниже 1400°C в течение не менее одной минуты. После этого температуру снижают до комнатной, а давление - до атмосферного. Полученный материал имеет модуль Юнга 390-460 ГПа, объемный модуль 210-380 ГПа, модуль сдвига 170-180 ГПа и твердость 42-90 ГПа и представляет собой однородную высокодисперсную матрицу из карбида бора с гомогенно распределенными в ней алмазами с размерами порядка 1 мкм, с фактической плотностью не менее 98% от теоретической. 1 з.п. ф-лы, 4 ил., 3 пр.

Изобретение предназначено для аэрокосмической отрасли, оборонной промышленности и обработки твёрдых и сверхтвёрдых материалов. На молекулярный фуллерен С60 или фуллеренсодержащую сажу с добавкой серосодержащего соединения воздействуют давлением от 0,2 до 12 ГПа и температурой от 0 до 2000 oС. В качестве серосодержащего соединения используют сероуглерод, соединение из группы меркаптанов или продукт взаимодействия соединения из группы меркаптанов с элементарной серой. Структура полученного высокотвердого углеродного материала образована связанными между собой ковалентными связями слоями двумерно-поляризованных вдоль оси вращения второго порядка молекул фуллерена. Твёрдость полученного материала более 10 ГПа. 2 н. и 2 з.п. ф-лы, 5 ил., 6 пр.

Изобретение относится к СВЧ электроакустике и является основой для создания стабилизированных генераторов сетки частот, узкополосных фильтров, высокочувствительных сенсоров и других СВЧ частотозадающих элементов для средств связи, автоматики и радиолокации. Технический результат - обеспечение высокой стабильности частоты генерации и минимального значения фазовых шумов в широком частотном диапазоне. Многочастотный резонатор на объемных акустических волнах содержит звукопровод и источник акустических колебаний, который включает в себя пьезоэлектрик, верхний и нижний металлические электроды , при этом источник акустических колебаний размещен на одной из поверхностей звукопровода, звукопровод выполнен из ориентированного монокристалла алмаза с кристаллографическими плоскостями срезов(100), или (110), или (111), соответствующих направлениям распространения чистых продольных мод. 3 з.п. ф-лы, 3 ил.

Изобретение относится к технологическим процессам получения легированных алмазов, которые могут быть использованы в электронике и приборостроении, а также в качестве ювелирного камня. Легированный алмаз получают методом химического осаждения из газовой фазы (ХОГФ) на подложку в реакционной камере 2. Легирующий компонент 7 берут в твердом состоянии и размещают в камере легирования 3, в которой выполнено не менее трех присоединительных фланцев, два из которых служат для присоединения камеры легирования 3 к линии подачи рабочего газа 1, а третий - для прохождения лазерного излучения 8 в импульсном режиме через прозрачное окно 5 внутрь камеры легирования 3 для распыления легирующего компонента 7, причем концентрацию легирующего компонента 7 в алмазе регулируют путем варьирования параметров лазера: тока накачки лазерного диода, частоты лазерных импульсов, расстояния от фокуса лазерного излучения до поверхности легирующего компонента. В качестве рабочего газа может быть использована смесь водорода и метана в объемных соотношениях от 98:2% до 90:10%. Дополнительно в рабочий газ может быть введен кислород. Изобретение позволяет прецизионно и в широком диапазоне концентраций (от 1014 атом/см3 до 9×1019 атом/см3) легировать алмаз различными элементами, такими как бор, сера, кремний в процессе его роста путем ХОГФ. 2 з.п. ф-лы, 1 ил., 4 табл., 4 пр.

Изобретение может быть использовано при изготовлении изделий, работающих в агрессивных средах и повышенной температуре, таких как мембраны, фильтры, покрытия. Материал на основе углеродных нанотрубок получают газофазным осаждением в вертикальном CVD-реакторе 1, который предварительно вакуумируют, продувают аргоном в течение 10-12 мин и нагревают до 900-1150 °С. Затем через канал 2 пропускают несущий газ - водород с объемной скоростью около 1000 мл/мин и одновременно с ним - трехкомпонентную смесь со скоростью 4,5-5,0 мл/мин, содержащую, масс.%: 1,0-10,0 ферроцена, 0,5-1,5 тиофена и 93,5-98,5 этанола. Изобретение позволяет получить материалы в виде пористых пленок с размером пор от 10 до 300 нм, состоящих из углеродных нанотрубок диаметром от 2,5 до 30 нм, без использования подложки или каркаса. 7 ил.

Изобретение относится к светотехнике и может быть использовано при создании и применении ультрафиолетовых вакуумных ламп, в частности для обеззараживания воды и воздуха, сортировки и анализа минералов, в лазерной технике, в оптоэлектронике. Технический результат- продление срока службы и повышение работоспособности ультрафиолетовых ламп. Лампа вакуумная ультрафиолетового диапазона спектра содержит в вакуумной колбе из прозрачного для излучения диэлектрического материала анод, катод из углеродного материала, модулятор с отверстием для формирования пучка электронов, элементы, крепящие и центрирующие катод, контактный узел, обечайку и электропроводящее вещество, нанесенное на один из концов катода. Катод выполнен в виде автокатода из наноструктурированного углерода, а в качестве элементов, крепящих и центрирующих катод, использован юстировочный диск, ориентированный соосно отверстию модулятора, в котором размещен автокатод из наноструктурированного углерода, причем автокатод с нанесенным электропроводящим веществом на один из его концов выполнен контактирующим по боковой поверхности с обечайкой, которая в свою очередь контактирует с внешней стороной автокатода и с внутренней стороной юстировочного диска, при этом контактный узел жестко соединен с контактным вводом автокатода, а анод выполнен с нанесенным слоем ультрафиолетового люминофора со спектром люминисценции в диапозоне длин волн менее 350 нм и затем нанесенным на него слоем алюминия. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники. Сущность: способ включает механоактивационную обработку в планетарной шаровой мельнице твердых растворов, содержащих теллуриды висмута и сурьмы с добавлением размольного агента, и последующее спекание полученных порошков. Механоактивационную обработку проводят последовательно в два этапа. Сначала при центробежном ускорении мелющих тел в пределах от 800 до 1000 м/сек2 в течение 10-30 мин. Затем при центробежном ускорении мелющих тел в пределах от 20 до 100 м/сек2 в течение 20-40 мин. В качестве размольного агента используют соединения слоистой структуры, выбранные из ряда: MoS2, MoSe, WS2, WSe, BN или графит. Размольный агент берут в количестве 0,1-1,5 мас.% от массы твердого раствора теллуридов висмута и сурьмы. Полученный термоэлектрический материал состоит из частиц тройных твердых растворов теллуридов висмута и сурьмы с размерами от 5 нм до 100 нм, между которыми расположены слои толщиной от 1 до 10 нм соединения, выбранного из ряда: MoS2, MoSe, WS2, WSe, BN или графита. Техническим результатом изобретения является повышение термоэлектрической добротности выше 1,10. 1 з.п. ф-лы, 3 ил.
Изобретение относится к наноструктурному термоэлектрическому материалу. Материал содержит теллурид сурьмы в виде тройного твердого раствора состава ВixSb2-xТе3, где х имеет значения от 0,4 до 0,5, и дисперсный наполнитель, выполненый из ультрадисперсного алмаза со средним размером частиц от 3 до 5 нм. Концентрация частиц ультрадисперсного алмаза составляет от 0,2 до 15% от объема тройного твердого раствора. Изобретение позволяет повысить термоэлектрическую добротность выше 1,0 и механическую прочность более 100 МПа наноструктурного термоэлектрического материала. 1 з.п. ф-лы, 4 пр.

Изобретение относится к технологии получения углеродных волокнистых композиционных материалов, в частности к способу упрочнения углеродного волокна, и имеет широкий спектр применения от спортивного инвентаря до деталей самолетов. Способ включает пропитку углеродного волокна раствором С60 или коллоидным раствором (золем) фуллеренсодержащей сажи или черни. Дополнительно можно проводить активацию фуллерена С60 или частиц фуллеренсодержащей сажи или черни, нанесенных на углеродное волокно, облучением. Использование изобретения позволяет получить углеродное волокно с повышенным значением предельной прочности на разрыв до 11-18% и повышенным значением модуля упругости до 5-7%. 3 з.п. ф-лы,4 ил., 3 пр.
Изобретение может быть использовано при изготовлении инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности. Готовят исходную композицию, состоящую из следующих компонентов, мас.%: фуллерены С-60 или С-70 - 30-50; теплопроводящий компонент - 10-60; связующая добавка - остальное. Теплопроводящий компонент выбирают из ряда: вюртцитный нитрид бора, кубический нитрид бора, алмаз или их смеси. Связующую добавку выбирают из элементов IVa группы Периодической системы или их сплава с медью. Теплопроводящий компонент можно предварительно покрыть связующей добавкой. На полученную композицию воздействуют статическим давлением от 8 до 13 ГПа при нагреве до 900-2000°C в течение не менее 20 секунд. Получают сверхтвёрдый композиционный материал с теплопроводностью до 330 Вт/м·К, отношением микротвердости к модулю упругости 0,12, что указывает на его высокую износостойкость. 1 з.п. ф-лы, 3 пр.
Изобретение относится к получению сверхтвердого композиционного материала на основе углерода, который может быть использован для изготовления инструментов для горнодобывающей, камнеобрабатывающей и металлообрабатывающей промышленности

Изобретение относится к способам получения новых форм углерода, а именно к способам получения модификаций углерода с луковичной структурой, содержащих азот, и может быть использовано для изготовления демпфирующих элементов, амортизаторов, пар трения и износостойких деталей микромеханизмов

Изобретение относится к области наноструктурированных и нанокомпозитных материалов
Изобретение относится к области порошковой металлургии, в частности спеченным высокопрочным композиционным материалам на основе алюминия, используемым в качестве конструкционных материалов в авиакосмической и транспортной промышленности

Изобретение относится к области электронных датчиков магнитного поля и может быть использовано в измерительной технике, системах безопасности, автоматике, робототехнике

Изобретение относится к области микроэлектронных источников света, более конкретно к светоизлучающим диодам ультрафиолетовой и видимой области спектра, и может быть использовано в оптоэлектронике, автоматике, микросистемной технике и других областях

Изобретение относится к электронным приборам на основе поверхностных акустических волн
Изобретение относится к области соединения разнородных материалов, в частности к способу соединения монокристаллов алмаза с металлами, и может быть использован для создания различного рода однокристального обрабатывающего инструмента, медицинского инструмента, для создания на поверхности полупроводниковых и иных алмазов электрических контактов с металлом

Изобретение относится к технике получения высокотвердых, износостойких материалов, в частности к получению алмазосодержащих материалов, содержащих высокодисперсные алмазы

Изобретение относится к способам изготовления холодных катодов, широко применяющихся в электровакуумной технике, например в источниках света

Изобретение относится к технике высокого давления и высокой температуры, а именно к технологии производства сверхтвердых материалов (алмаза, лонсдейлита, кубического и вюртцитного нитрида бора, фуллеренов)

Изобретение относится к устройствам для создания высокого давления и температуры и может быть использовано для синтеза сверхтвердых материалов, таких как алмаз и кубический нитрид бора, а также для термобарической обработки различных материалов
Изобретение относится к области выращивания монокристаллов алмаза и может быть использовано для получения монокристаллов, предназначенных для изготовления наковален алмазных камер высокого давления

Изобретение относится к технике контроля материалов и изделий и может быть использовано при наноиндентировании, или в сканирующем зондовом микроскопе, для измерения электрических свойств поверхности материала с нанометровым разрешением

 


Наверх