Патенты автора Паршин Сергей Георгиевич (RU)

Изобретение может быть использовано при механизированной и автоматической мокрой подводной резке металлических конструкций непосредственно в пресной и морской воде. Порошковая проволока состоит из стальной оболочки и порошкообразной шихты при следующем содержании ее компонентов, мас. %: карбонат железа 30–50, карбонат щелочного металла 10–20, комплексный фторид щелочного металла 5–10, оксид железа 20–45, металлический раскислитель 7–18. Порошковая проволока обеспечивает повышение эффективности и качества подводной мокрой дуговой резки нержавеющих сталей за счет ввода дополнительной экзотермической энергии при одновременном увеличении концентрации тепловложения. 3 з.п. ф-лы, 1 табл.
Изобретение может быть использовано при подводной мокрой механизированной и автоматической сварке и наплавке металлических деталей. Порошковая проволока состоит из никелевой оболочки и порошкообразной шихты, при следующем содержании ее компонентов, мас.%: оксид редкоземельного металла 10–35, фторид редкоземельного металла 12–38, комплексный фторид щелочного металла 3–6, никель 30–45, хром 8–18, молибден 3–7, марганец 4–8, алюминий 2–4, титан 2–4. Проволока имеет тяжелую шлаковую систему из оксидов и фторидов редкоземельных металлов, которая эффективно изолирует сварочную ванну от воды и снижает образование дефектов. Легирующая система проволоки позволяет получить в сварном шве наплавленный металл с высокоаустенитной микроструктурой, которая обладает высокой прочностью и препятствует образованию холодных трещин на границе шва при сварке высокопрочных бейнитных сталей. Техническим результатом является получение качественных сварных соединений высокопрочных низколегированных сталей при подводной мокрой сварке. 3 з.п. ф-лы, 1 табл.

Изобретение может быть использовано для наплавки покрытий на металлические детали, в частности для изготовления изделий методом послойной аддитивной роботизированной наплавки. На поверхности алюминиевого стержня выполняют композиционное покрытие, состоящее из металлической матрицы и распределенной в ней дисперсной фазы из смеси наноразмерных частиц карбидов и соединений редкоземельных металлов с размером частиц менее 1000 нм в следующем соотношении, мас.%: металлическая матрица 55-96, наноразмерные частицы карбидов 3,9-40, наноразмерные частицы соединений редкоземельных металлов 0,1-5. В качестве алюминиевого стержня используют проволоку, ленту или пруток из чистого алюминия или алюминиевого сплава. В качестве матрицы композиционного покрытия используют металл, выбранный из группы: никель, титан, железо, медь и хром. Карбиды выбраны из группы: карбид вольфрама, карбид кремния, карбид хрома, карбид молибдена, карбид ванадия, карбид титана, карбид ниобия, карбид гафния, карбид тантала, карбид бора и карбид циркония. Соединения редкоземельных металлов выбраны из группы: фторид лантана, фторид иттрия, фторид церия, борид лантана, борид иттрия, борид церия, оксид лантана, оксид иттрия и оксид церия. Изобретение обеспечивает увеличение твердости, износостойкости и коррозионной стойкости наплавленного металла. 3 з.п. ф-лы, 1 ил.

Изобретение может быть использовано при подводной механизированной и автоматической мокрой сварке, а также дуговой резке металлических конструкций непосредственно в пресной и морской воде. На поверхности деталей вдоль оси сварки или резки закрепляют водонепроницаемую ленту с активирующим флюсом, по которой осуществляют сварку или резку порошковой проволокой. Лента содержит оболочку из полимера или металлической фольги с размещенным внутри нее слоем активирующего флюса, содержащего компоненты в следующем соотношении, мас. %: комплексный фторид щелочного металла 15-45, фторид щелочноземельного металла 40-80, политетрафторэтилен 5-15. Техническим результатом является увеличение глубины проплавления при улучшении качества сварки или реза за счет увеличения проплавляющей способности дуги, связывания водорода фтором и фторидами, а также изолирования сварочной ванны и канала реза жидким шлаком, образующимся при расплавлении флюсовой ленты. 4 з.п. ф-лы, 1 ил.
Изобретение относится к машиностроению и может быть использовано при механизированной и автоматической мокрой подводной резке металлических конструкций в пресной и морской воде. Порошковая проволока содержит стальную оболочку, внутри которой размещена порошкообразная шихта, содержащая в своем составе карбонат железа, карбонат щелочного металла, комплексный фторид щелочного металла, нитрат щелочного металла и металлический порошок. Массовая доля указанных компонентов подобрана экспериментальным путем для повышения качества мокрой дуговой резки сталей повышенной толщины за счет ввода дополнительной экзотермической энергии при одновременном увеличении концентрации тепловложения. 4 з.п. ф-лы, 1 табл.

Изобретение может быть использовано при механизированной и автоматической подводной резке мокрым способом металлических конструкций непосредственно в пресной и морской воде. Порошковая проволока состоит из стальной оболочки и шихты, содержащей порошкообразные компоненты при следующем содержании, мас. %: карбонат железа 50-70, карбонат щелочного металла 20-30, комплексный фторид щелочного металла 10-20. В качестве карбоната щелочного металла шихта содержит соединение или смесь соединений, выбранных из группы карбонатов натрия, калия, лития, цезия. В качестве комплексного фторида щелочного металла шихта содержит соединение или смесь соединений, выбранных из группы гексафторалюминатов натрия, калия, лития, цезия. Мокрая подводная резка порошковой проволокой с шихтой указанного состава позволяет обеспечить глубокое погружение дуги в металл, малую ширину реза, отсутствие шлака и грата на внешней и внутренней поверхности. Порошковая проволока обеспечивает повышение эффективности и качества мокрой подводной дуговой резки сталей за счет интенсификации окисления железа при одновременном увеличении концентрации тепловложения электрической дуги. 2 з.п. ф-лы, 3 табл.

Изобретение относится к области сварочного производства и может быть использовано при сварочных работах на открытых площадках. Устройство содержит горелку (1) с пакетом мелкоячеистых сеток и конфузорным соплом, подающий механизм (2) электродной проволоки, а также источник сварочного тока. Для автоматической регулировки скорости истечения защитного газа в зависимости от скорости набегающего ветра, температуры окружающей среды, режимов сварки, расстояния от среза сопла до изделия устройство содержит датчик (3) скорости ветра, два интегрирующих усилителя (4 и 5), запоминающее устройство (6), сумматор (13), два усилителя-корректора (9 и 10), датчик тока дуги (8), фотодатчик (11), усилитель (12) с регулируемым коэффициентом усиления, датчик (7) температуры окружающей среды, регулятор (14) скорости истечения защитного газа, задатчик (18) максимальной величины скорости истечения защитного газа, логические элементы И (16) и НЕ (17). Использование изобретения позволяет повысить качество сварки на открытых площадках. 1 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроению и может быть применено при дуговой сварке и наплавке металлических деталей в среде защитного газа. Газовое сопло сварочной горелки выполнено в форме конфузора, состоящего из криволинейного и двух прямолинейных участков на входе и выходе сопла с внутренней поверхностью в виде параболической кривой, у которой начало и конец асимптотически стремятся к прямой линии параллельно продольной оси сопла. При этом кромка сопла на выходе выполнена с углом скоса 10-45°. Длина прямолинейного участка на входе находится в интервале 0,1-1,2 входного диаметра сопла. Длина прямолинейного участка на выходе находится в интервале 0,2-1,5 выходного диаметра сопла. Кромка сопла на выходе имеет толщину в пределах 0,2-1 мм. Изобретение позволяет повысить эффективность газовой зашиты зоны сварки при дуговой сварке в среде защитного газа в условиях ветра путем увеличения скорости истечения и жесткости защитной газовой струи. 3 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Предлагаемое изобретение относится к машиностроению и может быть применено при дуговой сварке и наплавке металлических деталей в среде защитного газа. Горелка для дуговой сварки в среде защитных газов состоит из корпуса, головки, ручки, накидной гайки, газотокоподвода, электрододержателя, электрода, крепежных винтов, конфузорного сопла и пакета сеток, причем внутренняя поверхность конфузорного сопла выполнена в виде параболической кривой, у которой начало и конец асимптотически стремятся к прямой линии, расположенной параллельно продольной оси сопла, перед входом в который устанавливается пакет сеток, состоящий из корпуса, втулки, уплотнительных колец и стальных сеток. Сетки в пакете имеют размер ячеи 0,15-0,25 мм и коэффициент аэродинамического сопротивления не менее 10, а расстояние между сетками составляет не менее 15 размеров ячеи. Техническим результатом изобретения является улучшение эффективности газовой зашиты зоны сварки при дуговой сварке в среде защитного газа в условиях ветра. 2 з.п. ф-лы, 2 ил., 1 табл.

Изобретение может быть использовано при дуговой сварке и наплавке металлических деталей из легированных сталей высокой прочности в среде защитного газа и под флюсом. Проволока содержит металлический стержень и электролитически нанесенное на него нанокомпозиционное покрытие, включающее металлическую матрицу с распределенными в ней наноразмерными частицами. Матрица содержит наноразмерные частицы фторида или смеси фторидов редкоземельного металла и наноразмерные частицы тугоплавкого борида металла при следующем соотношении объемов матрицы и наноразмерных частиц в покрытии, %: металлическая матрица 55-96, наноразмерные частицы фторида или смеси фторидов редкоземельного металла 3-20, наноразмерные частицы тугоплавкого борида металла 1-25. Фторид редкоземельного металла выбран из группы, включающей фторид лантана, фторид иттрия и фторид церия. В качестве тугоплавкого борида металла использован борид титана или борид циркония. Сварочная проволока позволяет увеличить прочность, пластичность и ударную вязкость сварных швов легированных сталей. 2 з.п. ф-лы, 6 табл.

Изобретение может быть использовано при дуговой сварке и наплавке металлических деталей в среде защитного газа и под флюсом. Проволока содержит металлический стержень и электролитически нанесенное на него нанокомпозиционное покрытие, включающее металлическую матрицу с распределенными в ней наноразмерными частицами. Упомянутое покрытие содержит наноразмерные частицы фторида или смеси фторидов редкоземельного металла и наноразмерные частицы гексаборида или смеси гексаборидов щелочноземельного металла при следующем соотношении объемов матрицы и наноразмерных частиц в покрытии, %: металлическая матрица 55-96, наноразмерные частицы фторида или смеси фторидов 3-20, наноразмерные частицы гексаборида или смеси гексаборидов 1-25. Фторид редкоземельного металла выбран из группы, включающей фторид лантана, фторид иттрия и фторид церия. Гексаборид щелочноземельного металла выбран из группы, включающей гексаборид кальция, гексаборид бария и гексаборид стронция. Сварочная проволока позволяет увеличить прочность, пластичность и ударную вязкость сварных швов трубных и криптоустойчивых сталей высокой прочности. 2 з.п. ф-лы, 6 табл.

Изобретение может быть использовано при дуговой сварке и наплавке металлических деталей из высокопрочных сталей в среде защитного газа и под флюсом. Проволока состоит из металлического стержня с нанокомпозиционным покрытием, состоящим из металлической матрицы и наноразмерных частиц фторидов и боридов редкоземельных металлов с размером частиц менее 1000 нм, при следующем соотношении объемов матрицы и наноразмерных частиц в покрытии, %: металлическая матрица 55-96, наноразмерные частицы фторида или смеси фторидов редкоземельного металла 3-20, наноразмерные частицы борида или смеси боридов редкоземельного металла 1-25. Сварочная проволока позволяет увеличить прочность, пластичность и ударную вязкость сварных швов высокопрочных сталей. 2 з.п.ф-лы, 6 табл.

Предлагаемое изобретение относится к машиностроению и может быть применено при механизированной и автоматической подводной сварке и наплавке металлических деталей. Порошковая проволока для механизированной подводной сварки состоит из стальной оболочки и шихты, содержащей рутиловый концентрат, железный порошок, никель, карбонат щелочного металла, комплексный фторид щелочного металла, и дополнительно содержит раскислители в виде ферромарганца, ферросилиция, ферротитана и алюминия при следующем содержании компонентов, мас.%: рутиловый концентрат 25-37; плавиковый шпат 8-17; железный порошок 32-45; никель 1-3; карбонат щелочного металла 3-7; комплексный фторид щелочного металла 3-13; ферромарганец 4-6; ферросилиций 2-4; ферротитан 1-3; алюминий 1-2. Предлагаемая порошковая проволока позволяет улучшить качество сварного шва и увеличить ударную вязкость сварных швов при подводной сварке за счет активных металлургических реакций по раскислению сварочной ванны. 2 з.п. ф-лы, 2 табл., 1 пр.

Предлагаемое изобретение относится к машиностроению и может быть применено при механизированной и автоматической сварке и наплавке металлических деталей под водой. Предлагаемая порошковая проволока для подводной сварки сталей по первому варианту состоит из стальной оболочки и шихты, содержащей рутиловый концентрат, гематит, железный порошок, ферромарганец, никель, комплексный фторид щелочного металла и политетрафторэтилен при следующем содержании компонентов, мас.%: рутиловый концентрат 23-42; гематит 18-27; железный порошок 28-42; ферромарганец 5-9; никель 3-5; комплексный фторид щелочного металла 3-15; политетрафторэтилен 3-15. Порошковая проволока для подводной сварки сталей по второму варианту состоит из стальной оболочки и шихты, содержащей рутиловый концентрат, гематит, железный порошок, ферромарганец, никель, комплексный фторид щелочного металла и тетрафторид углерода при следующем содержании компонентов, мас.%: рутиловый концентрат 23-42; гематит 18-27; железный порошок 28-42; ферромарганец 5-9; никель 3-5; комплексный фторид щелочного металла 3-15; тетрафторид углерода 3-15. Предлагаемые порошковые проволоки позволяют улучшить качество сварного шва и уменьшить образование газовых пор при подводной сварке. 2 н. и 1 з.п. ф-лы, 3 табл., 1 пр.

Изобретение может быть использовано при контактной стыковой сварке длинномерных изделий, в т.ч. профильного проката и труб. На поверхность свариваемых труб наносят активирующий флюс. На внешнюю поверхность наносят слой соли или смеси солей, выбранных из группы фтористых солей щелочных и щелочноземельных металлов. На внутреннюю поверхность наносят слой соли или смеси солей, выбранных из группы хлористых солей щелочных и щелочноземельных металлов. Щелочные металлы выбирают из группы: литий, калий, натрий, а щелочноземельные металлы выбирают из группы: кальций, барий, магний. Способ контактной стыковой сварки позволяет улучшить качество сварных соединений и механические характеристики сварных соединений труб. 2 з.п. ф-лы, 1 ил., 2 табл.
Изобретение может быть использовано при контактной стыковой сварке труб из углеродистых и легированных сталей. Во внутреннюю полость труб перед сваркой подают инертный газ, в который вводят газообразные галогениды при следующем соотношении инертного газа и газообразных галогенидов, мас.%: инертный газ 80…97, газообразные галогениды 3…20. Инертный газ выбирают из группы: аргон, гелий. Газообразный галогенид выбирают из группы: фторид кремния, хлорид кремния, фторид бора, фторид серы, фреон. Способ контактной стыковой сварки позволяет улучшить качество сварных соединений и механические характеристики сварных соединений труб. 2 з.п. ф-лы, 1 табл.

Изобретение может быть использовано для сварки и наплавки металлических деталей. Сварочный материал содержит металлический сердечник, покрытый полимерной оболочкой с распределенными в ней наноразмерными частицами активирующего флюса. Компоненты оболочки взяты в следующем соотношении, об.%: полимер 40-93, активирующий флюс 3-50, карбиды 2-55, редкоземельные металлы 2-5. Сердечник выполнен в виде металлической проволоки или металлической ленты, или состоит из металлического порошка. Полимер оболочки выбран из политетрафторэтилена, полиамида или полиимида. Карбид или смесь карбидов оболочки выбраны из группы, содержащей: карбид вольфрама, карбид хрома, карбид молибдена, карбид ванадия, карбид титана, карбид ниобия, карбид гафния, карбид тантала, карбид бора и карбид циркония. Наноструктурированный сварочный материал обладает хорошими сварочно-технологическими свойствами, увеличивает плотность наплавленного металла и позволяет увеличить твердость наплавленного износостойкого слоя на поверхность деталей, работающих при интенсивном ударно-абразивном износе. 3 з.п. ф-лы, 1 ил.

Порошковая проволока может быть использована при механизированной и автоматической подводной сварке и наплавке металлических деталей. Порошковая проволока состоит из стальной оболочки и размещенной внутри нее шихты. На ее поверхности выполнено композиционное покрытие в виде медной матрицы с распределенными в ней наноразмерными частицами активирующего флюса, содержащего фторид щелочного металла. Шихта содержит компоненты в следующем соотношении, мас.%: рутиловый концентрат 24-38,5; двуокись кремния 1,5-6,6; гематит 2,8-16,5; железный порошок 32-45; ферромарганец 5-12; никель 1-3; карбонат щелочного металла 3-7; комплексный фторид щелочного металла 2-8. Порошковая проволока обладает хорошими сварочно-технологическими свойствами, обеспечивает мелкокапельный переход, стабильность горения дуги и позволяет улучшить качество сварных соединений за счет активных металлургических реакций по связыванию водяного пара и водорода. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение может быть использовано при дуговой сварке и наплавке металлических деталей. На внешней и/или внутренней поверхности металлической оболочки порошковой проволоки выполнено нанокомпозиционное покрытие в виде металлической матрицы с распределенной в ней смесью наноразмерных частиц фторида металла и редкоземельных металлов. Размещенная в полости оболочки шихта содержит шлакообразующие, газообразующие, ионизирующие и легирующие компоненты. Упомянутое покрытие имеет следующее соотношение объемов матрицы и наноразмерных частиц, %: металлическая матрица 55-98, наноразмерные частицы фторида металла 1-30, наноразмерные частицы редкоземельных металлов 1-15. Наноструктурированная порошковая проволока обладает хорошими сварочно-технологическими свойствами, обеспечивает мелкокапельный переход электродного металла и позволяет улучшить механические свойства сварных соединений. 1 з.п. ф-лы, 2 табл., 1 ил.

Изобретение может быть использовано при сварке и наплавке металлических деталей в среде защитного газа. На металлический стержень электрода электролитически нанесено нанокомпозиционное покрытие, включающее металлическую матрицу с распределенными в ней наноразмерными частицами фторида металла и редкоземельных металлов. Упомянутое покрытие имеет следующее соотношение объемов матрицы и наноразмерных частиц, %: металлическая матрица 55-96, наноразмерные частицы фторида металла 3-30, наноразмерные частицы редкоземельных металлов 1-15. На поверхность покрытия может быть нанесено дополнительное композиционное покрытие, состоящее из металлической матрицы с распределенными в ней наноразмерными частицами фторида металла. Сварочная проволока обладает хорошими сварочно-технологическими свойствами, позволяет улучшить капельный переход электродного металла и механические свойства сварных соединений. 1 з.п. ф-лы, 1 ил., 2 табл.

Изобретение может быть использовано при наплавке металлических деталей в среде защитного газа. На металлический стержень нанесено покрытие в виде электролитически полученного нанокомпозита, включающего металлическую матрицу с равномерно распределенными в ней наноразмерными частицами активирующего флюса, содержащего фтористые соединения, и наноразмерные частицы карбида или смеси карбидов. Покрытие имеет следующее соотношение объемов матрицы и наноразмерных частиц, %: металлическая матрица 30-92, наноразмерные частицы активирующего флюса 3-5, наноразмерные частицы карбида 5-65. Карбид или смесь карбидов выбраны из группы: карбид вольфрама, карбид хрома, карбид молибдена, карбид ванадия, карбид титана, карбид ниобия, карбид гафния, карбид тантала, карбид бора, карбид циркония. Проволока обладает хорошими сварочно-технологическими свойствами, обеспечивает мелкокапельный переход электродного металла и позволяет увеличить твердость износостойкого слоя, наплавленного на поверхность деталей, работающих при интенсивном ударно-абразивном износе. 1 з.п. ф-лы, 1 ил., 1 табл.

Порошковая проволока может быть использована при механизированной и автоматической сварке и наплавке металлических деталей под водой мокрым способом. В стальной оболочке размещена шихта, содержащая компоненты в следующем соотношении, мас.%: рутиловый концентрат 23-42; гематит 18-27; железный порошок 28-42; ферромарганец 3-8; никель 3-5; комплексный фторид щелочного металла 5-18. Порошковая проволока обладает хорошими сварочно-технологическими свойствами, обеспечивает мелкокапельный перенос расплавленного металла, стабильность горения дуги и позволяет улучшить качество сварных соединений за счет активных металлургических реакций по связыванию водяного пара и водорода. 1 з.п. ф-лы, 1 табл.

Изобретение может быть использовано при механизированной и автоматической сварке и наплавке металлических деталей под водой мокрым способом. В стальной оболочке проволоки размещена шихта, содержащая компоненты в следующем соотношении, мас.%: рутиловый концентрат 25-37; плавиковый шпат 8-17; железный порошок 32-45; ферромарганец 5-9; никель 1-3; карбонат щелочного металла 3-7; комплексный фторид щелочного металла 3-13. Порошковая проволока обладает хорошими сварочно-технологическими свойствами, обеспечивает мелкокапельный перенос расплавленного металла, стабильность горения дуги и позволяет улучшить формирование шва и качество сварных соединений за счет активных металлургических реакций по связыванию воды и водорода. 2 з.п. ф-лы, 1 табл.

 


Наверх